Geometric morphometrics, scute patterns and biometrics of loggerhead turtles (Caretta caretta) in the central Mediterranean

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We investigate for the first time allometric vs. non-allometric shape variation in sea turtles through a geometric morphometrics approach. Five body parts (carapace, plastron, top and lateral sides of the head, dorsal side of front flippers) were considered in a sample of 58 loggerhead turtles (Caretta caretta) collected in the waters around Lampedusa island, Italy, the central Mediterranean. The allometric component was moderate but significant, except for the plastron, and may represent an ontogenetic optimization in the case of the head and flippers. The predominant non-allometric component encourages further investigation with sex and origin as potential explanatory variables. We also reported the variation of marginal and prefrontal scutes of 1497 turtles, showing that: variation of marginals is mostly limited to the two anteriormost scutes, symmetry is favored, asymmetry is biased to one pattern, and the variation of marginal and prefrontal scutes are linked. Comparisons with other datasets from the Mediterranean show a high variability, more likely caused by epigenetic factors. Finally, conversion equations between the most commonly used biometrics (curved and straight carapace length, carapace width, and weight) are often needed in sea turtle research but are lacking for the Mediterranean and are here estimated from a sample of 2624 turtles.

Amphibia-Reptilia

Publication of the Societas Europaea Herpetologica

Sections

References

AdamsD.C.RohlfF.J.SliceD.E. (2004): Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zoolog. 71: 5-16.

AdamsD.C.RohlfF.J.SliceD.E. (2013): A field comes of age: geometric morphometrics in the 21st century. Hystrix 24: 7-14.

AraújoM.S.PerezS.I.MagazoniM.J.PetryA.C. (2014): Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation. BMC Evolutionary Biology 14: 251.

BjorndalK.A. (1997): Foraging ecology and nutrition of sea turtles. In: The Biology of Sea Turtles. CRC Marine Science Series, p.  199-231. LutzP.L.MusickJ.A., Eds, CRC Press, Inc., Boca Raton, Florida.

BlanvillainG.PeaseA.P.SegarsA.L.RostalD.C.RichardsA.J.OwensD.W. (2008): Comparing methods for the assessment of reproductive activity in adult male loggerhead sea turtles Caretta caretta at Cape Canaveral, Florida. Endang. Species Res. 6: 75-85.

BoltenA.B. (1999): Techniques for measuring sea turtles. In: Research and Management Techniques for the Conservation of Sea Turtles, p.  110-114. EckertK.L.BjorndalK.A.Abreu-GroboisF.A.DonnellyM., Eds, IUCN/SSC Marine Turtle Specialist Group, Washington, DC.

BonnetX.DelmasV.El-MoudenH.SlimaniT.SterijovskiB.KuchlingG. (2010): Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology 113: 213-220.

BowenB.W. (2003): What is a loggerhead turtle? The genetic perspective. In: Loggerhead Sea Turtles, p.  7-27. BoltenA.B.WitheringtonB.E., Eds, Smithsonian Books, Washington, D.C.

BroderickA.C.CoyneM.S.FullerW.J.GlenF.GodleyB.J. (2007): Fidelity and over-wintering of sea turtles. Proc. R. Soc. B-Biol. Sci. 274: 1533-1538.

BrunerE.Martin-LoechesM.ColomR. (2010): Human midsagittal brain shape variation: patterns, allometry and integration. Journal of Anatomy 216: 589-599.

CaracappaS.PisciottaA.PersichettiM.F.CaracappaG.AlduinaR.ArculeoM. (2016): Nonmodal scutes patterns in the Loggerhead Sea Turtle (Caretta caretta): a possible epigenetic effect? Canadian Journal of Zoology 94: 379-383.

CardiniA.PollyD.DawsonR.MilneN. (2015): Why the long face? Kangaroos and wallabies follow the same ‘rule’of cranial evolutionary allometry (CREA) as placentals. Evolutionary Biology 42: 169-176.

CarrerasC.PascualM.CardonaL.AguilarA.MargaritoulisD.ReesA.TurkozanO.LevyY.GasithA.AureggiM.KhalilM. (2007): The genetic structure of the loggerhead sea turtle (Caretta caretta) in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implications. Conserv. Genet. 8: 761-775.

CasaleP.FreggiD.BassoR.ArganoR. (2005): Size at male maturity, sexing methods and adult sex ratio in loggerhead turtles (Caretta caretta) from Italian waters investigated through tail measurements. Herpetolog. J. 15: 145-148.

CasaleP.FreggiD.CinàA.RoccoM. (2013): Spatio-temporal distribution and migration of adult male loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea: further evidence of the importance of neritic habitats off north Africa. Mar. Biol. 160: 703-718.

CasaleP.MarianiP. (2014): The first ’lost year’ of Mediterranean Sea turtles: dispersal patterns indicate subregional management units for conservation. Mar. Ecol. Prog. Ser. 498: 263-274.

CeballosC.ValenzuelaN. (2011): The role of sex-specific plasticity in shaping sexual dimorphism in a long-lived vertebrate, the snapping turtle Chelydra serpentina. Evolutionary Biology 38: 163-181.

ChiariY.HyseniC.FrittsT.H.GlabermanS.MarquezC.GibbsJ.P.ClaudeJ.CacconeA. (2009): Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise. PLoS ONE 4: e6272.

ChiariY.ClaudeJ. (2011): Study of the carapace shape and growth in two Galápagos tortoise lineages. J. Morphol. 272: 379-386.

ChiariY.ClaudeJ. (2012): Morphometric identification of individuals when there are more shape variables than reference specimens: a case study in Galápagos tortoises. Comptes Rendus Biologies 335: 62-68.

ClaudeJ.ParadisE.TongH.AuffrayJ.C. (2003): A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biol. J. Linnean Soc. 79: 485-501.

Clavijo-BaquetS.LoureiroM.AchavalF. (2010): Morphological variation in the South American snake-necked turtle Hydromedusa tectifera (Testudines: Chelidae). Chelonian Conserv. Biol. 9: 231-237.

DavenportJ.ScottC.R. (1993): Individual growth and allometry of young green turtles (Chelonia mydas L.). Herpetolog. J. 3: 19-25.

DrakeA.G.KlingenbergC.P. (2008): The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society of London B: Biological Sciences 275: 71-76.

ErgeneS.AymakC.UcarA.H. (2011): Carapacial scute variation in green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta) hatchlings in Alata, Mersin, Turkey. Turk. J. Zool. 35: 343-356.

FernándezC.A.RiveraA.C. (2004): Asymmetries and accessory scutes in Emys orbicularis from northwest Spain. Biologia 59: 85-88.

FerreiraP.D.TreichelR.L.ScaramussaT.L.ScalfoniJ.T. (2011): Morphometric pattern in Caretta caretta (Linnaeus, 1758) (Cheloniidae) hatchlings from nests with different embryo development rates. Braz. J. Biol. 71: 151-156.

GarofaloL.MastrogiacomoA.CasaleP.CarliniR.EleniC.FreggiD.GelliD.KnittweisL.MifsudC.MingozziT.NovariniN.ScaravelliD.ScillitaniG.OliverioM.NovellettoA. (2013): Genetic characterization of central Mediterranean stocks of the loggerhead turtle (Caretta caretta) using mitochondrial and nuclear markers, and conservation implications. Aquat. Conserv: Mar. Freshw. Ecosyst. 23: 868-884.

GonzalezP.N.KristensenE.MorckD.W.BoydS.HallgrímssonB. (2013): Effects of growth hormone on the ontogenetic allometry of craniofacial bones. Evolution & development 15: 133-145.

HastieT.TibshiraniR. (1986): Generalized additive models. Statistical science 1: 297-310.

KamezakiN.MatsuiM. (1997): Allometry in the loggerhead turtle, Caretta caretta. Chelonian Conserv. Biol. 2: 421-425.

KamezakiN. (2003): What is a loggerhead turtle? The morphological perspective. In: Loggerhead Sea Turtles, p.  28-43. BoltenA.B.WitheringtonB., Eds, Smithsonian Institution Press, Washington.

KarlS.A.BowenB.W. (1999): Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conserv. Biol. 13: 990-999.

KlingenbergC.P.BarluengaM.MeyerA. (2002): Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909-1920.

KlingenbergC.P. (2011): MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11: 353-357.

LawingA.M.PollyP.D. (2010): Geometric morphometrics: recent applications to the study of evolution and development. J. Zool. 280: 1-7.

LemicD.BenítezH.A.BažokR. (2014): Intercontinental effect on sexual shape dimorphism and allometric relationships in the beetle pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). Zoologischer Anzeiger-A Journal of Comparative Zoology 253: 203-206.

MargaritoulisD.ArganoR.BaranI.BentivegnaF.BradaiM.N.CaminasJ.A.CasaleP.De MetrioG.DemetropoulosA.GerosaG.GodleyB.HoughtonJ.LaurentL.LazarB. (2003): Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. In: Loggerhead Sea Turtles, p.  175-198. BoltenA.B.WitheringtonB., Eds, Smithsonian Institution Press, Washington.

MargaritoulisD.ChirasG. (2011): Scalation patterns of loggerhead turtles nesting in Lagans Bay, Zakynthos Island, Greece. Mar. Turtle Newsl. 131: 29-31.

MarquezM.R. (1990): Sea turtles of the world, FAO Fish. Synopsis No. 125, Vol. 11.

MarshallC.D.GuzmanA.NarazakiT.SatoK.KaneE.A.Sterba-BoatwrightB.D. (2012): The ontogenetic scaling of bite force and head size in loggerhead sea turtles (Caretta caretta): implications for durophagy in neritic, benthic habitats. J. Exp. Biol. 215: 4166-4174.

MarshallC.D.WangJ.Rocha-OlivaresA.Godinez-ReyesC.FislerS.NarazakiT.SatoK.Sterba-BoatwrightB.D. (2014): Scaling of bite performance with head and carapace morphometrics in green turtles (Chelonia mydas). J. Exp. Mar. Biol. Ecol. 451: 91-97.

MitteroeckerP.GunzP.WindhagerS.SchaeferK. (2013): A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, the Italian Journal of Mammalogy 24: 59-66.

MyersE.M.JanzenF.J.AdamsD.C.TuckerJ.K. (2006): Quantitative genetics of plastron shape in slider turtles (Trachemys scripta). Evolution 60: 563-572.

OliverG. (2014): Variabilité et malformations de l’écaillure de la Caouanne, Caretta caretta (Linnaeus, 1758) (Reptilia Cheloniidae), sur les côtes françaises de Méditerranée. Bulletin Societe Herpetologie Francais 150: 9-23.

ÖzdemİrB.TurkozanO. (2006): Carapacial scute variation in green turtle, Chelonia mydas hatchlings in northern Cyprus. Turk. J. Zool. 30: 141-146.

PatelS.H.PanagopoulouA.MorrealeS.J.KilhamS.S.KarakassisI.RiggallT.MargaritoulisD.SpotilaJ.R. (2015): Differences in size and reproductive output of loggerhead turtles Caretta caretta nesting in the eastern Mediterranean Sea are linked to foraging site. Mar. Ecol. Prog. Ser. 535: 231-241.

R Development Core Team (2016): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

RohlfF.J.SliceD. (1990): Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39: 40-59.

RohlfF.J. (2015): The tps series of software. Hystrix, the Italian Journal of Mammalogy 26: 9-12.

SalmonM.SchollJ. (2014): Allometric growth in juvenile marine turtles: possible role as an antipredator adaptation. Zoology 117: 131-138.

SimE.L.BoothD.T.LimpusC.J. (2014a): Non-modal scute patterns, morphology, and locomotor performance of loggerhead (Caretta caretta) and flatback (Natator depressus) turtle hatchlings. Copeia 2014: 63-69.

SimE.L.BoothD.T.LimpusC.J.GuineaM.L. (2014b): A comparison of hatchling locomotor performance and scute pattern variation between two rookeries of the flatback turtle (Natator depressus). Copeia 2014: 339-344.

TelemecoR.S.WarnerD.A.ReidaM.K.JanzenF.J. (2013): Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective. Integrative Zoology 8: 197-208.

TürkozanO.IlgazÇ.SakS. (2001): Carapacial scute variation in loggerhead turtles, Caretta caretta. Zool. Middle East 24: 137-142.

TürkozanO.YilmazC. (2007): Nest relocation as a conservation strategy: looking from a different perspective. Mar. Turtle Newsl. 118: 6-8.

UroševićA.LjubisavljevićK.IvanovićA. (2014): Variation in skull size and shape of the common wall lizard (Podarcis muralis): allometric and non-allometric shape changes. Contributions to Zoology 83: 67-77.

ValenzuelaN.AdamsD.C.BowdenR.M.GaugerA.C.DouglasM. (2004): Geometric morphometric sex estimation for hatchling turtles: a powerful alternative for detecting subtle sexual shape dimorphism. Copeia 2004: 735-742.

WibbelsT. (1999): Diagnosing the sex of sea turtles in foraging habitats. In: Research and Management Techniques for the Conservation of Sea Turtles, p.  139-143. EckertK.L.BjorndalK.A.Abreu-GroboisF.A.DonnellyM., Eds, IUCN/SSC Marine Turtle Specialist Group Publication No. 4, Gland.

WynekenJ. (2001): The anatomy of sea turtles. In: U.S. Dept. of Commerce NOAA Technical Memorandum NMFS-SEFSC-470; 2001, 172 pp.

YazdiA.B. (2014): Application of geometric morphometrics to analyse allometry in two species of the genus Myrmica (Hymenoptera: Formicidae).

YilmazC.TurkozanO.BardakciF. (2011): Genetic structure of loggerhead turtle (Caretta caretta) populations in Turkey. Biochem. Syst. Ecol. 39: 266-276.

ZbindenJ.A.BearhopS.BradshawP.GillB.MargaritoulisD.NewtonJ.GodleyB.J. (2011): Migratory dichotomy and associated phenotypic variation in marine turtles revealed by satellite tracking and stable isotope analysis. Mar. Ecol.-Prog. Ser. 421: 291-302.

ŽikićV.PetrovićA.IvanovićA. (2014): Allometric shape changes indicate significant divergence in the wing shape between asexual and sexual lineages of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). Acta entomologica serbica 19: 53-62.

Figures

  • Landmarks for the carapace (a) and the plastron (b) of loggerhead turtles.

    View in gallery
  • Landmarks for the top of the head (a), the left side of the head (b) and the left front flipper (c) of loggerhead turtles.

    View in gallery
  • Shape variation of the carapace of loggerhead turtles in the Mediterranean. Minimum and maximum scores of PC1 and PC2 are shown. The anterior part is on the right. See fig. 1 for landmark positions.

    View in gallery
  • Shape variation of the top of the head of loggerhead turtles in the Mediterranean. Minimum and maximum scores of PC1 and PC2 are shown. The anterior part is on the right. See fig. 2 for landmark positions.

    View in gallery
  • Shape variation of the lateral side of the head (left side) of loggerhead turtles in the Mediterranean. Minimum and maximum scores of PC1 and PC2 are shown. The anterior part is on the left. See fig. 2 for landmark positions.

    View in gallery
  • Shape variation of the front flipper (left) of loggerhead turtles in the Mediterranean. Minimum and maximum scores of PC1 and PC2 are shown. The anterior part is on the left. See fig. 2 for landmark positions.

    View in gallery
  • Shape variation of the plastron of loggerhead turtles in the Mediterranean. Minimum and maximum scores of PC1 and PC2 are shown. The anterior part is on the top. See fig. 1 for landmark positions.

    View in gallery
  • Allometry in five body parts of loggerhead turtles. SCL: straight carapace length.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 26 26 18
Full Text Views 8 8 7
PDF Downloads 3 3 2
EPUB Downloads 0 0 0