Tracing a toad invasion: lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The black-spined toad, Duttaphrynus melanostictus, is widespread in South and South-East (SE) Asia, although recent molecular analyses have revealed that it represents a species complex (here called the D. melanostictus complex). Invasive populations of this toad have been detected in Madagascar since, at least, 2014. We here trace the origin of this introduction based on mitochondrial DNA sequences of 340 samples. All 102 specimens from Madagascar have identical sequences pointing to a single introduction event. Their haplotype corresponds to a lineage occurring in Cambodia, China, Laos, Thailand, Vietnam, and some locations of eastern Myanmar and northern Malaysia, here named the SE Asian lineage. Within this lineage, specimens from one location in Cambodia and three locations in Vietnam have the same haplotype as found in Madagascar. This includes Ho Chi Minh City, which has a major seaport and might have been the source for the introduction. Species distribution models suggest that the current range of the Madagascan invasive population is within the bioclimatic space occupied by the SE Asian lineage in its native range. The potential invasion zone in Madagascar is narrower than suggested by models from localities representing the full range of the D. melanostictus complex. Thus, an accurate taxonomy is essential for such inferences, but it remains uncertain if the toad might be able to spread beyond the potential suitable range because (1) knowledge on species-delimitation of the complex is insufficient, and (2) the native range in SE Asia might be influenced by historical biogeography or competition.

Tracing a toad invasion: lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar

in Amphibia-Reptilia

Sections

References

AmphibiaWeb (2016): http://amphibiaweb.org University of California Berkeley CA USA. Accessed 4 Oct 2016.

AndreoneF.CadleJ.E.CoxN.GlawF.NussbaumR.A.RaxworthyC.J.StuartS.N.VallanD.VencesM. (2005): Species review of amphibian extinction risks in Madagascar: conclusions from the global amphibian assessment. Conserv. Biol. 19: 1790-1802.

AndreoneF.RabibisoaN.RandrianantoandroC.CrottiniA.EdmondsD.KrausF.LewisJ.P.MooreM.RabemananjaraF.C.E.RabemanantsoaJ.C.VencesM. (2014): Risk review is under way for invasive toad. Nature 512: 253.

BergerL.SpeareR.DaszakP.GreenD.E.CunninghamA.A.GogginC.L.SlocombeR.RaganM.A.HyattA.D.McDonaldK.R.HinesH.B.LipsK.R.MarantelliG.ParkesH. (1998): Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 95: 9031-9036.

BletzM.C.RosaG.M.AndreoneF.CourtoisE.A.SchmellerD.S.RabibisoaN.H.C.RabemananjaraF.C.E.RaharivololoniainaL.VencesM.WeldonC.EdmondsD.RaxworthyC.J.HarrisR.N.FisherM.C.CrottiniA. (2015): Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Sci. Rep. 5: 8633.

BroennimannO.FitzpatrickM.C.PearmanP.B.PetitpierreB.PellissierL.YoccozN.G.ThuillerW.FortinM.J.RandinC.ZimmermannN.E.GrahamC.H.GuisanA. (2012): Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21: 481-497.

BroennimannO.GuisanA. (2008): Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4: 585-589.

BrownJ.L. (2014): SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods Ecol. Evol. 5: 694-700.

BrownJ.L.SilleroN.GlawF.BoraP.VieitesD.R.VencesM. (2016): Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11: e0144076.

BrownK.A.FarrisZ.J.YesufG.GerberB.D.RasambainarivoF.KarpantyS.KellyM.J.RazafimahaimodisonJ.C.LarneyE.WrightP.C.JohnsonS.E. (2016): Modeling co-occurrence between toxic prey and naıve predators in an incipient invasion. Biodivers. Conserv. 25: 2723-2741.

BrufordM.W.HanotteO.BrookfieldJ.F.Y.BurkeT. (1992): Single-locus and multilocus DNA fingerprint. In: Molecular Genetic Analysis of Populations: a Practical Approach p.  225-270. HoelzelA.R. Ed. IRL PressOxford.

CaiM.Z. (1979): Observations on reproductive habits of thirty-two anuran species of Fujian province. J. Fujian Normal Univ. 1: 71-79 [in Chinese].

ChurchG. (1960): Invasion of Bali by Bufo melanostictus. Herpetologica 16: 15-21.

ClaveroM.Garcia-BerthouE. (2005): Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20: 110.

ConnD.B. (2014): Aquatic invasive species and emerging infectious disease threats: a one health perspective. Aquat. Invasions 9: 383-390.

CrottiniA.AndreoneF.EdmondsD.HansenC.M.LewisJ.P.RabemanantsoaJ.C.MooreM.KrausF.VencesM.RabemananjaraF.C.E.RandrianantoandroC. (2014): A new challenge for amphibian conservation in Madagascar: the invasion of Duttaphrynus melanostictus in Toamasina province. FrogLog 111: 46-47.

CrowlT.A.CristT.O.ParmenterR.R.BelovskyG.LugoA.E. (2008): The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6: 238-246.

ElithJ.KearneyM.PhillipsS. (2010): The art of modelling range-shifting species. Methods Ecol. Evol. 1: 330-342.

EvansT.G.DiamondS.E.KellyM.W. (2015): Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3: cov056.

FisherM.C.HenkD.A.BriggsC.J.BrownsteinJ.S.MadoffL.C.McCrawS.L.GurrS.J. (2012): Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186-194.

GlawF.VencesM. (2007): A Field Guide to the Amphibians and Reptiles of Madagascar3rd Edition. KölnVences and Glaw.

HasanM.IslamM.M.KhanM.M.R.IgawaT.AlamM.S.DjongT.H.KurniawanN.JoshyH.YongH.S.DaicusM.B.KurabayashiA.KuramotoM.SumidaM. (2014): Genetic divergences of South and Southeast Asian frogs: a case study of several taxa based on 16S ribosomal RNA gene data with notes on the generic name Fejervarya. Turkish J. Zool. 38: 389-411.

HatcherM.J.DickJ.T.A.DunnA.M. (2012): Diverse effects of parasites in ecosystems: linking interdependent processes. Front. Ecol. Env. 10: 186-194.

HijmansR.J.CameronS.E.ParraJ.L.JonesP.G.JarvisA. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.

IngerR.StuebingR.B. (2005): A Field Guide to the Frogs of Borneo 2nd edn. Malaysia: Natural History Publication (Borneo).

JenkinsR.K.TognelliM.F.BowlesP.CoxN.BrownJ.L.ChanL.AndreoneF.AndriamazavaA.AndriantsimanarilafyR.R.AnjeriniainaM.BoraP.BradyL.D.HantalalainaE.F.GlawF.GriffithsR.A.Hilton-TaylorC.HoffmannM.KatariyaV.RabibisoaN.H.RafanomezantsoaJ.RakotomalalaD.RakotondravonyH.RakotondrazafyN.A.RalambonirainyJ.RamanamanjatoJ.B.RandriamahazoH.RandrianantoandroJ.C.RandrianasoloH.H.RandrianirinaJ.E.RandrianizahanaH.RaselimananaA.P.RasoloheryA.RatsoavinaF.M.RaxworthyC.J.RobsomanitrandrasanaE.RollandeF.van DijkP.P.YoderA.D.VencesM. (2014): Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE 9: e100173.

KearneyM.PorterW. (2009): Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12: 334-350.

KellerR.P.GeistJ.JeschkeJ.M.KühnI. (2011): Invasive species in Europe: ecology, status, and policy. Environ. Sci. Europe 2011: 23.

KolbyJ.E.KrausF.RabemananjaraF.C.E.RabesihanakaS.RabibisoaN.RafanomezantsoaJ.RandrianantoandroC.RandrianianaR.D.RaxworthyC.J.RazafimahatratraB.RobsomanitrandrasanaE. (2014): Ecology: stop Madagascar’s toad invasion now. Nature 509: 563.

KongS.Sánchez-PachecoS.J.MurphyR.W. (2015): On the use of median-joining networks in evolutionary biology. Cladistics 32: 691-699.

KullC.A.TassiJ.CarrièrS.M. (2014): Approaching invasive species in Madagascar. Madagascar Conserv. Develop. 9: 60-70.

KumarS.StecherG.TamuraK. (2016): MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.

McClellandP.ReardonJ.T.KrausF.RaxworthyC.J.RandrianantoandroC. (2015): Asian Toad Eradication Feasibility Report for Madagascar. Te Anau New Zealand. 75 p.

MooreM.Solofo Niaina FidyJ.F.EdmondsD. (2015): The new toad in town: distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8: 440-455.

NgoB.V.NgoC.D. (2013): Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52: 1-13.

PearsonR.G. (2015): Asian common toads in Madagascar: an urgent effort to inform surveys and eradication efforts. Global Change Biol. 21: 9.

PhillipsS.J.AndersonR.P.SchapireR.E. (2006): Maximum entropy modeling of species geographic distributions. Ecol. Modelling 190: 231-259.

ReaserJ.K.MeyersonL.A.CronkQ.De PoorterM.EldregeL.G. (2007): Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environ. Conserv. 34: 98-111.

RoyH. (2016): Invasive species: control wildlife pathogens too. Nature 530: 281.

SalzburgerW.EwingG.B.Von HaeselerA. (2011): The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20: 1952-1963.

ShcheglovitovaM.AndersonR.P. (2013): Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Modelling 269: 9-17.

ShineR. (2010): The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85: 253-291.

SimberloffD.MartinJ.L.GenovesiP.MarisV.WardleD.A.AronsonJ.CourchampF.GalilB.García-BerthouE.PascalM.PyšekP.SousaR.TabacchiE.VilàM. (2013): Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28: 58-66.

SinclairS.J.WhiteM.D.NewellG.R. (2010): How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15: 8.

StuartB.L.IngerR.F.VorisH.K. (2006): High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol. Lett. 2: 470-474.

VredenburgV.T.KnappR.A.TunstallT.S.BriggsC.J. (2010): Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc. Natl. Acad. Sci. USA 107: 9689-9694.

WoganG.O.StuartB.L.IskandarD.T.McGuireJ.A. (2016): Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12: 20150807.

Figures

  • View in gallery

    Sampling localities and mitochondrial haplotype network of Duttaphrynus melanostictus. (A) Overview map showing in white rectangles the areas highlighted in map (B) showing South-East Asia, and map (C) showing a part of eastern Madagascar where the invasive toad is currently present. Dots on the map are collection localities for samples used in the genetic analysis. Colors of the dots correspond to the haplotype network (D). The network was reconstructed from 347 bp of the mitochondrial region encoding ND3 from 340 samples, all corresponding to a single mitochondrial subclade of Wogan et al. (2016), herein called the SE Asian lineage. Haplogroups H1-H4, including subcategories H1a and H1b, belong to the SE Asian lineage; they were ad hoc defined for convenience, and do not correspond to equally differentiated units. The circle in map B defines the area in Cambodia and Vietnam where specimens with H1a were found, which is the only haplotype detected in Madagascar.

  • View in gallery

    Potential distribution of Duttaphrynus melanostictus in Madagascar as predicted by species distribution models derived from (A) a large portion of the entire Asian range of the D. melanostictus complex in Asia, and (B) the range of the SE Asian lineage only. Warmer colors indicate a higher prediction. Red dots show the currently known range in the Toamasina area. (C) Correlation circle depicting the relationships among the 19 bioclimatic variables (supplementary table S3) throughout SE Asia and Madagascar. Variables representing temperature are in red. PC1 and PC2 axes of a principal component analysis explain 52.2% and 25.6% of the variation, respectively. Graphs in the lower row show the climate space accessible to D. melanostictus (light grey), and represents climate sampled within a 200-km buffer drawn around an adaptive convex-hull (ACH) of all the occurrence localities (α=3, done in SDMtoolbox), which resulted separate buffered polygons for localities in Madagascar and SE Asia. The climate space occupied by (D) all Asian localities (in purple), (E) Asian localities of the SE Asian lineage (green), and (F) the Madagascar localities (red); dark grey shape in F is climate space occupied by all of Madagascar. Dotted green line represents the bioclimatic space shaded green in graph E; purple dashed line represents the purple shaded space in graph D; red dotted line represents the space of the Madagascar samples shaded red in graph F.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 68 68 26
Full Text Views 37 37 27
PDF Downloads 4 4 3
EPUB Downloads 7 7 3