Nest-site selection and the factors influencing hatching success and offspring phenotype in a nocturnal skink

In: Amphibia-Reptilia
View More View Less
  • 1 School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
  • 2 School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
  • 3 The Open Polytechnic of New Zealand, Private Bag 31914, Lower Hutt 5040, New Zealand

Nest-site selection in ectothermic animals influences hatching success and offspring phenotype, and it is predicted that females should choose nesting sites that maximise their reproductive fitness, ultimately through the reproductive success of their offspring. We completed nest-site choice experiments on a nocturnal lizard, the egg-laying skink (Oligosoma suteri), to determine whether eggs (and subsequent hatchlings) from cooler nests do better at cooler incubation temperatures, and conversely if those laid in warmer nests perform better at warmer incubation temperatures. We provided a simple nest-choice experiment, with oviposition-retreat sites available in either a hot or a cool sector of the enclosure; in the wild females nest under objects. Female O. suteri laid eggs both during the day and night, and nested more in the hot than cool sector. Eggs from each clutch were split across three egg incubation temperatures (18°C, 22°C, 26°C) to decouple the impact of initial nest-site choice from the subsequent incubation temperature regime. Whether eggs were initially laid in the hot or cool sector was not related to hatching success, offspring phenotype or offspring locomotor performance. We conclude that offspring phenotype and performance is primarily influenced by the temperature during incubation, rather than the initial thermal environment of the nest location. Thus, female O. suteri may select warmer nesting sites to ensure higher incubation temperature and enhanced offspring fitness.

  • Booth D.T. (2006): Influence of incubation temperature on hatchling phenotype in reptiles. Physiol. Biochem. Zool. 79: 274-281.

  • Bull J.J., Gutzke W.H.N., Bulmer M.G. (1988): Nest choice in a captive lizard with temperature-dependent sex determination. J. Evol. Biol. 2: 177-184.

    • Search Google Scholar
    • Export Citation
  • Chamberlain A.J., Cree A., Hare K.M. (2010): Mysterious moments: unveiling birth in a viviparous lizard. New Zealand J. Zool. 37: 65.

  • Chapple D.G., Hitchmough R.A. (2016): Biogeography of New Zealand lizards. Chapter 5. In: New Zealand Lizards, p.  109-131. Chapple D.G., Ed., Springer, Switzerland. DOI:10.1007/978-3-319-41674-8_5.

    • Search Google Scholar
    • Export Citation
  • Cree A., Hare K.M. (2016): Reproduction and life history of New Zealand lizards. Chapter 7. In: New Zealand Lizards, p.  169-206. Chapple D.G., Ed., Springer, Switzerland. DOI:10.1007/978-3-319-41674-8_7.

    • Search Google Scholar
    • Export Citation
  • Doody J.S. (2009): Superficial lizards in cold climates: nest site choice along an elevational gradient. Aust. Ecol. 34: 773-779.

  • Elphick M.J., Shine R. (1999): Sex differences in optimal incubation temperatures in a scincid lizard species. Oecologia 118: 431-437.

  • Hare K.M., Daugherty C.H., Cree A. (2002): Incubation regime affects juvenile morphology and hatching success, but not sex, of the oviparous lizard Oligosoma suteri (Lacertilia: Scincidae). New Zealand J. Zool. 29: 221-229.

    • Search Google Scholar
    • Export Citation
  • Hare K.M., Longson C.G., Pledger S., Daugherty C.H. (2004): Size, growth, and survival are reduced at cool incubation temperatures in the temperate lizard Oligosoma suteri (Lacertilia: Scincidae). Copeia 2004: 383-390.

    • Search Google Scholar
    • Export Citation
  • Hare K.M., Pledger S., Daugherty C.H. (2008a): Low incubation temperatures negatively influence locomotor performance and behavior of the nocturnal lizard Oligosoma suteri (Lacertidae: Scincidae). Copeia 2008: 16-22.

    • Search Google Scholar
    • Export Citation
  • Hare K.M., Daugherty C.H., Chapple D.G. (2008b): Comparative phylogeography of three skink species (Oligosoma moco, O. smithi and O. suteri; Reptilia: Scincidae) in northeastern New Zealand. Mol. Phylogenet. Evol. 46: 303-315.

    • Search Google Scholar
    • Export Citation
  • Iraeta P., Diaz J.A., Bauwens D. (2007): Nest-site selection by Psammodromus algirus in a laboratory thermal gradient. J. Herpetol. 41: 360-364.

    • Search Google Scholar
    • Export Citation
  • Miller K.A., Hare K.M., Nelson N.J. (2010): Do alternate escape tactics provide a means of compensation for impaired performance ability? Biol. J. Linn. Soc. 99: 241-249.

    • Search Google Scholar
    • Export Citation
  • Mitchell N.J., Nelson N.J., Cree A., Pledger S., Keall S.N., Daugherty C.H. (2006): Support for rare pattern of temperature-dependent sex determination in archaic reptiles: evidence from two species of tuatara (Sphenodon). Front. Zool. 3: 9. DOI:12.1186/1742-9994-3-9.

    • Search Google Scholar
    • Export Citation
  • Mitchell T.S., Maciel J.A., Janzen F.J. (2013a): Does sex-ratio selection influence nest-site choice in a reptile with temperature dependent sex determination? Proc. Roy. Soc. Lond. B 280: 20132460.

    • Search Google Scholar
    • Export Citation
  • Mitchell T.S., Warner D.A., Janzen F.J. (2013b): Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages. Ecology 94: 336-345.

    • Search Google Scholar
    • Export Citation
  • Pike D.A., Webb J.K., Andrews R.M. (2011): Social and thermal cues influence nest-site selection in a nocturnal gecko, Oedura lesueurii. Ethology 117: 796-801.

    • Search Google Scholar
    • Export Citation
  • Pike D.A., Webb J.K., Shine R. (2010): Nesting in a thermally challenging environment: nest-site selection in a rock-dwelling gecko, Oedura lesueurii (Reptilia: Gekkonidae). Biol. J. Linn. Soc. 99: 250-259.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team (2008): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    • Search Google Scholar
    • Export Citation
  • Refsnider J.M. (2016): Nest-site choice and nest construction in non-avian reptiles: evolutionary significance and ecological implications. Avian Biol. Res. 9: 76-88.

    • Search Google Scholar
    • Export Citation
  • Refsnider J.M., Janzen F.J. (2010): Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Ann. Rev. Ecol. Evol. Syst. 41: 39-57.

    • Search Google Scholar
    • Export Citation
  • Shine R. (1995): A new hypothesis for the evolution of viviparity in reptiles. Am. Nat. 145: 809-823.

  • Shine R., Harlow P.S. (1996): Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77: 1808-1817.

    • Search Google Scholar
    • Export Citation
  • Shine R., Elphick M.J., Harlow P.S. (1997): The influence of natural incubation environments on the phenotypic traits of hatchling lizards. Ecology 78: 2559-2568.

    • Search Google Scholar
    • Export Citation
  • Towns D.R. (1975a): Ecology of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae), in boulder beach habitats. New Zealand J. Zool. 2: 389-407.

    • Search Google Scholar
    • Export Citation
  • Towns D.R. (1975b): Reproduction and growth of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae). New Zealand J. Zool. 2: 409-423.

    • Search Google Scholar
    • Export Citation
  • Warner D.A., Andrews R.M. (2002): Nest-site selection in relation to temperature and moisture by the lizard Sceloporus undulatus. Herpetologica 58: 399-407.

    • Search Google Scholar
    • Export Citation
  • Webb J.K., Shine R., Christian K.A. (2006): The adaptive significance of reptilian viviparity in the tropics: testing the maternal manipulation hypothesis. Evolution 60: 115-122.

    • Search Google Scholar
    • Export Citation
  • Whitaker A.H. (1968): Leiolopisma suteri (Boulenger), an oviparous skink in New Zealand. New Zealand J. Sci. 11: 425-432.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 109 47 6
Full Text Views 221 10 0
PDF Downloads 20 8 2