Contrasting reproductive strategies in a narrow latitude range: the case of D’Orbigny’s slider

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Reproductive traits and the level of parental investment in offspring varies between individuals and species. These are central issues in life history theory and evolutionary biology. Maternal body size plays an important role in reproduction, and we usually observe variable investment in offspring by females. Thus, optimal egg size may not be reached in some populations or species. In this study, we tested if reproductive traits differed between populations of D’Orbigny’s slider in a specific geographical area in Brazil. We evaluated the relationship between reproductive traits to maternal body size and clutch size to egg size to determine possible trade-offs across populations. At the population level, maternal body size and reproductive traits of D’Orbigny’s slider were different even in geographically nearby areas. Maternal body size had a positive effect on clutch size, but not on egg size, except in the Arroio Grande population. Nevertheless, we did not observe a negative correlation between clutch and egg size in any population. Although maternal body size had effects in the different populations explaining most of the variation of clutch size, variation in egg size may be the result of decreased survival chances in unpredictable environments and possibly morphological constraints. The trade-off between egg size and number was not observed and this could be expected if resource availability and reproductive allocation by females vary greatly among individuals.


Publication of the Societas Europaea Herpetologica



AshtonK.G.BurkeR.L.LayneJ.N. (2007): Geographic variation in body and clutch size of Gopher tortoises. Copeia 2007: 355-363.

BagerA. (2003): Aspectos da biologia e ecologia da tartaruga tigre d’água, Trachemys dorbignyi (Testudines, Emydidae) no extremo sul do Estado do Rio Grande do Sul, Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul.

BagerA.RosadoJ. (2010): Estimation of core terrestrial habitats for freshwater turtles in southern Brazil based on nesting areas. J. Herpetol. 44: 658-662.

BagerA.FreitasT.R.O.KrauseL. (2007): Nesting ecology of a population of Trachemys dorbignyi (Emydidae) in southern Brazil. Herpetologica 63: 56-65.

BagerA.FreitasT.R.O.KrauseL. (2010): Morphological characterization of adults of Orbigny’s slider Trachemys dorbignyi (Duméril & Bibron 1835) (Testudines, Emydidae) in southern Brazil. Trop. Zool. 23: 181-194.

BagerA.KrauseL.FreitasT.R.O. (2012): Fidelity to nesting sites and orientation of Trachemys dorbigni (Duméril & Bibron, 1835) (Testudines: Emydidae) female in southern Brazil. Trop. Zool. 25: 31-38.

BleuJ.GamelonM.SætherB.E. (2016): Reproductive costs in terrestrial male vertebrates: insights from bird studies. Proc. R. Soc. B. 283: 20152600.

BrockelmanW.Y. (1975): Competition and fitness of offspring, and optimal clutch size. Am. Nat. 109: 677-699.

BujesC.S.VerrastroL. (2008): Chelonians from the Delta of Jacuí River, RS, Brazil: habitats use and conservation. Nat. Conserv. 6: 157-170.

BurnhamK.P.AndersonD.R. (2002): Model Selection and Multimodel Inference: a Practical Information – Theoretic Approach. Spring-Verlag, New York.

CagleF. (1939): A system of marking turtles for future identification. Copeia 1939: 170-173.

CongdonJ.D.GibbonsJ.W. (1987): Morphological constraint on egg size: a challenge to optimal egg size theory? PNAS 84: 4145-4147.

CongdonJ.D.DunhamA.E.van Loben SelsR.C. (1994): Demographics of common snapping turtles (Chelydra serpentina): implications for conservation and management of long-lived organisms. Am. Zool. 34: 397-408.

DazaJ.M.PaezV.P. (2007): Morphometric variation and its effect on reproductive potential in female Colombian slider turtles. Herpetologica 63: 125-134.

EnnenJ.R.LovichJ.E.Averill-MurrayR.C.YackulicC.AghaM.LoughranC.TennantL.SinervoB. (2017): The evolution of different maternal investment strategies in two closely related desert vertebrates. Ecol. Evol. 7: 1-13.

FagundesC.K.BagerA.CechinS.T.Z. (2010a): Trachemys dorbigni in an anthropic environment in southern Brazil: II) Reproductive ecology. Herpetol. J. 20: 195-199.

FagundesC.K.BagerA.CechinS.T.Z. (2010b): Trachemys dorbigni in an anthropic environment in southern Brazil: I) Sexual size dimorphism and population estimates. Herpetol. J. 20: 185-193.

FilinI. (2015): The relation between maternal phenotype and offspring size, explained by overhead material costs of reproduction. J. Theor. Biol. 364: 168-178.

GonçalvesF.A.CechinS.Z.BagerA. (2007): Predação de ninhos de Trachemys dorbigni (Duméril and Bibron, 1835) (Testudines, Emydidae), no extremo sul do Brasil. Rev. Bras. Biol. 24: 1063-1070.

GreavesW.F.LitzgusJ.D. (2009): Variation in life-history characteristics among populations of North American wood turtles: a view from the north. J. Zool. 279: 298-309.

HahnA.T.RosaC.A.BagerA.KrauseL. (2014): Dietary variation and overlap in D’Orbigny’s slider turtles Trachemys dorbigni (Duméril and Bibron 1835) (Testudines: Emydidae). J. Nat. Hist. 48: 721-728.

IversonJ.B.SmithG.R. (1993): Reproductive ecology of the painted turtles (Chrysemys picta) in the Nebraska Sandhills and across its range. Copeia 1993: 1-21.

IversonJ.B.HigginsH.SirulnikA.GriffithsC. (1997): Local and geographic variation in the reproductive biology of the snapping turtle (Chelydra serpentina). Herpetologica 53: 96-117.

JanzenF.J.MorjanC.L. (2002): Egg size, incubation temperature, and post hatching growth in painted turtles (Chrysemys picta). J. Herpetol. 36: 308-311.

KernM.M.GuzyJ.C.LovichJ.E.GibbonsJ.W.DorcasM.E. (2016): Relationships of maternal body size and morphology with egg and clutch size in the diamondback terrapin, Malaclemys terrapin (Testudines: Emydidae). Biol. J. Linn. Soc. 117: 295-304.

KimS. (2015): ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22: 665-674.

LinL.H.MaoF.ChenC.JiX. (2012): Reproductive traits of the gray ratsnake Ptyas korros from three geographically distinct populations. Curr. Zool. 58: 820-827.

LitzgusJ.D.MousseauT.A. (2006): Geographic variation in reproduction in a freshwater turtle (Clemmys guttata). Herpetologica 62: 132-140.

LloydD.G. (1987): Selection of offspring size and other size-versus-number strategies. Am. Nat. 129: 800-817.

LovichJ.E.MadrakS.V.DrostC.A.MonatestiA.J.CasperD.ZnariM. (2012): Optimal egg size in a suboptimal environment: reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) in central Arizona, USA. Amphibia-Reptilia 33: 161-170.

LovichJ.E.EnnenJ.R.YackulicC.B.Meyer-WilkinsK.AghaM.LoughranC.BjurlinC.AustinM.MadrakS. (2015): Not putting all their eggs in one basket: bet-hedging despite extraordinary annual reproductive output of desert tortoises. Biol. J. Linn. Soc. 115: 399-410.

Macip-RíosR.Brauer-RobledaP.Casas-AndreuG.Arias-CisnerosM.L.Sustaita-RodríguezV.H. (2012): Evidence for the morphological constraint hypothesis and optimal offspring size theory in the Mexican mud turtle (Kinosternon integrum). Zool. Sci. 29: 60-65.

Macip-RíosR.Casas-AndreuG.Sustaia-RodríguezV.H. (2013): Evidence of pelvic and nonpelvic constraint on egg size in two species of Kinosternon from Mexico. Chelolian Conserv. Biol. 12: 218-226.

MaritzM.F.DouglasR.M. (1994): Shape quantization and the estimation of volume and surface area of reptile eggs. J. Herpetol. 1994: 281-291.

MatzenauerR.RadinB.AlmeidaI.R. (2011): Atlas Climático do Rio Grande do Sul. Porto Alegre, Cemetrs.

McGinleyM.A. (1989): The influence of a positive correlation between clutch size and offspring fitness on the optimal offspring size. Evol. Ecol. 3: 150-156.

NaimiM.ZnariM.LovichJ.E.FeddadiY.Ait BaamraneM.A. (2012): Clutch and egg allometry of the turtle Mauremys leprosa (Chelonia: Geoemydidae) from a polluted peri-urban river in west-central Morocco. Herpetol. J. 22: 43-49.

NiencheskiL.F.WindomH.L.MooreW.S.JahnkeR.A. (2007): Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, southern Brazil. Mar. Chem. 106: 546-561.

ParkerG.A.BegonM.B. (1986): Optimal egg size and clutch size: effects of environment and maternal phenotype. Am. Nat. 128: 573-592.

R Development Core Team (2016): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Open access available at

ReznickD.ButlerM.J.IVRoddH. (2001): Life-history evolution in guppies. VII. The comparative ecology of high-and low-predation environments. Am. Nat. 157: 126-140.

RoffD.A. (1992): The Evolution of Life Histories: Theories and Analysis. Chapman & Hall, New York.

RollinsonN.BrooksR.J. (2008): Optimal offspring provisioning when egg size is “constrained”: a case study with the painted turtle Chrysemys picta. Oikos 117: 144-151.

RollinsonN.RoweL. (2015): The positive correlation between maternal size and offspring size: fitting pieces of a life-history puzzle. Biol. Rev. 2015: 1-15.

RoweJ.W. (1994): Reproductive variation and the egg size-clutch size trade-off within and among populations of painted turtles (Chrysemys picta bellii). Oecologia 99: 35-44.

RoweJ.W.CovalK.A.CampbellK.C. (2003): Reproductive characteristics of female midland painted turtles (Chrysemys picta marginata) from a population on Beaver Island, Michigan. Copeia 2003: 326-336.

RyanK.M.LindemanP.V. (2007): Reproductive allometry in the common map turtle, Graptemys geographica. Am. Midl. Nat. 158: 49-59.

SakaiS.HaradaY. (2001): Why do large mothers produce large offspring? Theory and a test. Am. Nat. 157: 348-359.

Salguero-GómezR.JonesO.R.JongejansE.BlombergS.P.HodgsonD.J.Mbeau-AcheC.BuckleyY.M. (2016): Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. PNAS 113: 230-235.

SmithC.C.FretwellS.D. (1974): The optimal balance between size and number of offspring. Am. Nat. 108: 499-506.

SpencerR.J.JanzenF.J. (2010): Demographic consequences of adaptive growth and the ramifications for conservation of long-lived organisms. Biol. Conserv. 143: 1951-1959.

StahlschmidtZ.O’LearyM.E.AdamoS. (2014): Food limitation leads to risky decision making and to tradeoffs with oviposition. Behav. Ecol. 25: 223-227.

StearnsS.C. (2000): Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87: 476-486.

UllerT.OlssonM. (2005): Trade-offs between offspring size and number in the lizard Lacerta vivipara: a comparison between field and laboratory conditions. J. Zool. 265: 295-299.

WarneR.W.CharnovE.L. (2008): Reproductive allometry and the size-number trade-off for lizards. Am. Nat. 172: 80-98.

WarnerD.A.JorgensenC.F.JanzenF.J. (2010): Maternal and abiotic effects on egg mortality and offspring size of turtles: temporal variation in selection over seven years. Funct. Ecol. 24: 857-866.

WilkinsonL.R.GibbonsJ.W. (2005): Patterns of reproductive allocation: clutch and egg size variation in three freshwater turtles. Copeia 2005: 868-879.

ZengZ.G.ZhaoJ.M.SunB.J. (2013): Life history variation among geographically close populations of the toad-headed lizard (Phrynocephalus przewalskii): exploring environmental and physiological associations. Acta Oecol. 51: 28-33.

ZuurA.F.IenoE.N.SmithG.M. (2007): Analyzing Ecological Data. Springer, New York.


  • Location of the three populations of D’Orbigny’s slider sampled in South of Brazil.

    View in gallery
  • Carapace length frequency of reproductive females. (A) Arroio Grande; (B) ESEC Taim; (C) Pelotas.

    View in gallery
  • Linear relationships between clutch size and maternal body size at the three populations of D’Orbigny’s slider turtle. Grey triangles represent Arroio Grande (AIC = 931.94) and the linear model is described by Y=exp(0.012x0.508). Dark grey circles represent ESEC Taim (AIC = 266.93) and the linear model is described by Y=exp(0.007x+0.651). Black diamonds represent Pelotas (AIC = 150.4) and the linear model is described by Y=exp(0.0145x0.931).

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 3 3 3
Full Text Views 5 5 4
PDF Downloads 2 2 1
EPUB Downloads 0 0 0