Relationships of the morphological variation in diploids, triploids and mosaics of Liolaemus chiliensis (Sauria: Liolaemidae)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Liolaemus chiliensis, a widely distributed species in Chile, is unique in vertebrates because it presents populations with diploid (2n), triploid (3n) and mosaic (2n/3n) females, and with diploid and mosaic males whose meiosis produces reduced (n) and unreduced (2n) euploid gametes. With the aim of evaluating evolutionary consequences of polyploidy, we analyzed the morphological variability of 103 adults of L. chiliensis from separated geographic areas using both traditional and geometric morphometry in order to visualize shape and size differences in individuals with different ploidy. The results indicated that Liolaemus chiliensis is morphologically variable; a significant effect was observed for the interaction term of the three factors tested: sex, ploidy and locality. From the analysis, females exhibited higher values of axilla groin distance than males. There were also morphological differences in mosaic and triploid organisms with respect to the sympatric and allopatric diploids in the dorsal shape of the head, and the presence of intermediate phenotypes of triploids and mosaic lizards with sympatric males and females associated with the axilla groin distance. Results showed that there are morphological differences between polyploid and diploid organisms with both traditional and geometric approaches, suggesting evolutionary trend to differentiation; future research is needed to assess the underlying ecological and genetic mechanisms related to this phenomenon.

Amphibia-Reptilia

Publication of the Societas Europaea Herpetologica

Sections

References

AbdalaC.S.BaldoD.JuárezR.A.EspinozaR.E. (2016): The first parthenogenetic Pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104: 487-497.

AdamsD.C.Otarola-CastilloE. (2013): Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4: 393-399.

AiassaD.MartoriR.GorlaN. (2005): Citogenética de los lagartos del género Liolaemus (Iguania: Liolaemidae) de América del Sur. Cuad. Herpetol. 18: 23-36.

BickhamJ.W.HanksB.G. (2010): Diploid-triploid mosaicism and tissue ploidy diversity within Platemys platycephala from Suriname. Cytogenet. Genome Res. 127: 280-286.

BickhamJ.W.TuckerP.K.LeglerJ.M. (1985): Diploid-triploid mosaicism: an unusual phenomenon in side-necked turtles (Platemys platycephala). Science 227: 1591-1593.

BonarS.A.ThomasG.L.PauleyG.B. (1988): Evaluation of the separation of triploid and diploid grass carp, Ctenopharyngodon idella (Valenciennes), by external morphology. J. Fish Biol. 33: 895-898.

CeiJ.M. (1986): Reptiles del Centro, Centro-Oeste y sur de la Argentina: Herpetofauna de las Zonas Áridas y Semiáridas. Museo regionale di scienze naturali, Torino, Italy.

CholevaL.JankoK. (2013): Rise and persistence of animal polyploidy: evolutionary constraints and potential. Cytogenet. Genome Res. 140: 151-170.

DawleyR.M.GoddardK.A. (1988): Diploid-triploid mosaics among unisexual hybrids of the minnows Phoxinus eos and Phoxinus neogaeus. Evolution 42: 649-659.

Donoso-BarrosR. (1966): Reptiles de Chile. Ediciones Universidad de Chile.

FechheimerN.S.IsakovaG.K.BelyaevD.K. (1983): Mechanisms involved in the spontaneous occurrence of diploid-triploid chimerism in the mink (Mustela vison) and chicken (Gallus domesticus). Cytogenet. Genome Res. 35: 238-243.

FreitasS.RochaS.CamposJ.AhmadzadehF.CortiC.SilleroN.IlgazÇ.KumlutaşY.ArekelyanM.HarrisJ.CarreteroM.A. (2016): Parthenogenesis through the ice ages: a biogeographic analysis of Caucasian rock lizards (genus Darevskia). Mol. Phylogenet. Evol. 102: 117-127.

FujitaM.K.MoritzC. (2010): Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127: 261-272.

GallardoM.H.BickhamJ.W.HoneycuttR.L.OjedaR.A.KohlerN. (1999): Discovery of tetraploidy in a mammal. Nature 401: 341.

GomelskyB.I.EmelyanovaO.V.RecoubratskyA.V. (1992): Application of the scale cover gene (N) to identification of type of gynogenesis and determination of ploidy in common carp. Aquaculture 106: 233-237.

GoodallC. (1991): Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Series B Stat. Methodol. 53: 285-339.

HallW.P. (2010): Chromosome variation, genomics, speciation and evolution in Sceloporus lizards. Cytogenet. Genome Res. 127: 143-165.

HeW.QinQ.LiuS.LiT.WangJ.XiaoJ.XieL.LiuY. (2012): Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter. PLOS One 7: e38976.

KaliontzopoulouA. (2011): Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles. Basic Appl. Herpetol. 25: 5-32.

KaliontzopoulouA.AdamsD.C.van der MeijdenA.PereraA.CarreteroM.A. (2012): Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evol. Ecol. 26: 825-845.

KearneyM.ShineR. (2004): Morphological and physiological correlates of hybrid parthenogenesis. Am. Nat. 164: 803-813.

KearneyM.ShineR. (2005): Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. J. Evol. Biol. 18: 609-618.

KingM. (1995): Species Evolution: the Role of Chromosome Change. Cambridge University Press, New York.

KupriyanovaL. (2009): Cytogenetic and genetic trends in the evolution of unisexual lizards. Cytogenet. Genome Res. 127: 273-279.

KupriyanovaL.A. (1989): Cytogenetic evidence for genome interaction in hybrid lacertid lizards. In: Evolution and Ecology of Unisexual Vertebrates, p.  236-240. DawleyR.M.BogartJ.P., Eds, New York State Museum.

LamborotM. (1993): Chromosomal evolution and speciation in some Chilean lizards. Evol. Biol. 7: 133-151.

LamborotM. (2008): Evolución cromosómica en reptiles. In: Herpetología de Chile, p.  161-193. VidalM.A.LabraA., Eds, Science Verlag.

LamborotM.Alvarez-SarretE. (1989): Karyotypic characterization of some Liolaemus lizards in Chile (Iguanidae). Genome 32: 393-403.

LamborotM.EatonL.C. (1992): Concordance of morphological variation and chromosomal races in Liolaemus monticola (Tropiduridae) separated by riverine barriers in the Andes. J. Zoolog. Syst. Evol. Res. 30: 189-200.

LamborotM.EatonL. (1997): The Maipo River as a biogeographical barrier to Liolaemus monticola (Tropiduridae) in the mountain ranges of central Chile. J. Zoolog. Syst. Evol. Res. 35: 105-111.

LamborotM.EatonL.C.CarrascoB.A. (2003): The Aconcagua River as another barrier to Liolaemus monticola (Sauria: Iguanidae) chromosomal races of central Chile. Rev. Chil. Hist. Nat. 76: 23-34.

LamborotM.ManzurM.E.Alvarez-SarretE. (2006): Triploidy and mosaicism in Liolaemus chiliensis (Sauria: Tropiduridae). Genome 49: 445-453.

MadlungA. (2013): Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110: 99-104.

MooreM.C.WhittierJ.M.CrewsD. (1985): Sex steroid hormones during the ovarian cycle of an all-female, parthenogenetic lizard and their correlation with pseudosexual behavior. Gen. Comp. Endocrinol. 60: 144-153.

MullerH.J.AltenburgE. (1930): The frequency of translocations produced by X-rays in Drosophila. Genetics 15: 283.

OlmoE. (2005): Rate of chromosome changes and speciation in reptiles. Genetica 125: 185-203.

OlssonM.ShineR.WapstraE.UjvariB.MadsenT. (2002): Sexual dimorphism in lizard body shape: the roles of sexual selection and fecundity selection. Evolution 56: 1538-1542.

OttoS.P. (2007): The evolutionary consequences of polyploidy. Cell 131: 452-462.

ParkI.S.NamY.K.KimD.S. (2006): Growth performance, morphometric traits and gonad development of induced reciprocal diploid and triploid hybrids between the mud loach (Misgurnus mizolepis Günther) and cyprinid loach (Misgurnus anguillicaudatus Cantor). Aquacult. Res. 37: 1246-1253.

ParkerE.D.Jr. (1979a): Phenotypic consequences of parthenogenesis in Cnemidophorus lizards. I. Variability in parthenogenetic and sexual populations. Evolution 33: 1150-1166.

ParkerE.D.Jr. (1979b): Phenotypic consequences of parthenogenesis in Cnemidophorus lizards. II. Similarity of C. tesselatus to its sexual parental species. Evolution 33: 1167-1179.

R Core Team (2017): The R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Website: http://www.R-project.org.

RobertsJ.A.VoH.D.FujitaM.K.MoritzC.KearneyM. (2012): Physiological implications of genomic state in parthenogenetic lizards of reciprocal hybrid origin. J. Evol. Biol. 25: 252-263.

RochaC.F.D. (1999): Home range of the tropidurid lizard Liolaemus lutzae: sexual and body size differences. Rev. Bras. Biol. 59: 125-130.

RohlfF.J. (2003a): TPSDIG. Version 1.22. Department of Ecology and Evolution. State University of New York, Stony Brook, NY. Website: http://life.bio.sunysb.edu/morph/.

RohlfF.J. (2003b): TPSRELW. Version 1.21. Department of Ecology and Evolution. State University of New York, Stony Brook, NY. Website: http://life.bio.sunysb.edu/morph/.

RohlfF.J.SliceD. (1990): Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39: 40-59.

Sallaberry-PincheiraN.GarinC.F.González-AcuñaD.SallaberryM.A.ViannaJ.A. (2011): Genetic divergence of Chilean long-tailed snake (Philodryas chamissonis) across latitudes: conservation threats for different lineages. Divers. Distrib. 17: 152-162.

SegatoS.BertottoD.FasolatoL.FrancesconA.BarbaroA.CoratoA. (2006): Effects of triploidy on feed efficiency, morphometric indexes and chemical composition of shi drum, Umbrina cirrosa L. Aquacult. Res. 37: 71-77.

SilleroN.CortiC.CarreteroM.A. (2016): Home ranges of parthenogenetic and bisexual species in a community of Darevskia lizards (Reptilia: Lacertidae). Zool. Middle East 62: 306-318.

SoltisD.E.BuggsR.J.DoyleJ.J.SoltisP.S. (2010): What we still don’t know about polyploidy. Taxon 59: 1387-1403.

StenbergP.SauraA. (2013): Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 140: 185-203.

StöckM.LamatschD.K.SteinleinC.EpplenJ.T.GrosseW.R.HockR.KlapperstückT.LampertK.ScheerU.SchmidM.SchartlM. (2002): A bisexually reproducing all-triploid vertebrate. Nat. Genet. 30: 325-328.

TaveD. (1993): Growth of triploid and diploid bighead carp, Hypophthalmichthys nobilis. J. Appl. Aquacult. 2: 13-26.

TiwaryB.K.KirubagaranR.RayA.K. (1999): Altered body shape as a morphometric indicator of triploidy in Indian catfish Heteropneustes fossilis (Bloch). Aquacult. Res. 30: 907-910.

VanhooydonckB.CruzF.AbdalaC.AzócarD.BoninoM.HerrelA. (2010): Sex-specific evolution of bite performance in Liolaemus lizards (Iguania: Liolaemidae): the battle of the sexes. Biol. J. Linn. Soc. 101: 461-475.

VerrastroL. (2004): Sexual dimorphism in Liolaemus occipitalis (Iguania: Tropiduridae). Iheringia, Sér. Zool. 94: 45-48.

VidalM.A.OrtizJ.C.RamírezC.C.LamborotM. (2005): Intraspecific variation in morphology and sexual dimorphism in Liolaemus tenuis (Tropiduridae). Amphibia-Reptilia 26: 343-351.

VidalM.A.VelosoA.MéndezM.A. (2006): Insular morphological divergence in the lizard Liolaemus pictus (Liolaemidae). Amphibia-Reptilia 27: 103-111.

WainwrightP.C.ReillyS.M. (1994): Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago.

WertheimB.BeukeboomL.W.Van de ZandeL. (2013): Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet. Genome Res. 140: 256-269.

Figures

  • Map of central Chile showing Liolaemus chiliensis sampling areas. Triangles: North group; circles: Center group; squares: South group. The arrow points out “La Vega” locality.

    View in gallery
  • Homologous landmarks in the dorsal and lateral views of the head of Liolaemus chiliensis.

    View in gallery
  • Principal component analysis for traditional morphometry variables of (a) females, (b) males and (c) individuals of the Center group in Liolaemus chiliensis. Ellipses in the figures represent the 95% confidence limits of the factors analyzed. Analysis was performed including all groups; points were presented separately to facilitate visualization.

    View in gallery
  • Deformation grids for the extreme values in the first two principal components (relative warps) of the shape variables in the dorsal view (a) and lateral view (b) of the head of Liolaemus chiliensis.

    View in gallery
  • First two principal components (relative warps) of geometric morphometry variables of the dorsal view of the head of (a) females, (b) males and (c) individuals of the Center group of Liolaemus chiliensis. Ellipses in the figures represent the 95% confidence limits of the different factors analyzed. Analysis was performed including all groups; points were presented separately to facilitate visualization.

    View in gallery
  • First two principal components (relative warps) of geometric morphometry variables of the lateral view of the head of (a) females, (b) males and (c) individuals of the center zone L. chiliensis. Ellipses in the figures represent the 95% confidence limits of the different factors analyzed. Analysis was performed including all groups; points were presented separately to facilitate visualization.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 9 9 9
Full Text Views 6 6 5
PDF Downloads 2 2 1
EPUB Downloads 0 0 0