Comparison of hematological parameters in two different high altitudinal populations of Batrachuperus pinchonii (Amphibian: Urodela)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Hematological parameters are key to reflect the health status of animals and their physiological adaptation to the environment. However, few studies focused on the inter- and intra-specific variations of hematological parameters in hynobiid salamanders. Here, we examined the hematological parameters of the stream salamander, Batrachuperus pinchonii, originating from two different altitudinal populations to explore their intra-specific variation. Sexual dimorphism is only present in the erythrocyte count and males have higher mean values than females. The morphometric values of erythrocyte, hemoglobin concentration, and erythrocyte count of the high altitudinal (Jiajin) population were smaller than those of the lower altitudinal (Sandaoping) population; however, a significant difference between two populations was only revealed in the case of erythrocyte length via ANOVA. The results of linear regression showed that a significant relationship was present between body condition and erythrocyte length as well as the erythrocyte length to erythrocyte width ratio. Our findings suggest that the features of hematological parameters in B. pinchonii are reflected in the size of erythrocyte, and neither in erythrocyte count nor in hemoglobin concentration. These results provide a foundation for assessing and monitoring the health status of this salamander species, and furthermore, for understanding the physiological basis of altitudinal adaptation.

Comparison of hematological parameters in two different high altitudinal populations of Batrachuperus pinchonii (Amphibian: Urodela)

in Amphibia-Reptilia

Sections

References

AllenderM.C.FryM.M. (2008): Amphibian hematology. Vet. Clin. Exot. Anim. 11: 463-480.

AnderssonM. (1994): Sexual Selection. Princeton University PressPrinceton.

ArikanH.ÇiçekK. (2014): Haematology of amphibians and reptiles: a review. North-West J. Zool. 10: 190-209.

ArikanH.OlgunK.IlgazÇ.Baranİ.KumlutaşY. (2003): Erythrocyte size and number in Neurergus strauchii (Urodela: Salamandridae). Russ. J. Herpetol. 10: 163-166.

AtatürM.K.ArikanH.MermerA. (1998): Erythrocyte sizes of some urodeles from Turkey. Turk. J. Zool. 22: 89-91.

BǎncilǎR.I.HartelT.PlǎiaşuR.SmetsJ.CogǎlniceanuD. (2010): Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegata. Ampbibia-Reptilia 31: 558-562.

BaraquetM.GrenatP.R.SalasN.E.MartinoA.L. (2013): Intraspecific variation in erythrocyte sizes among populations of Hynsiboas cordobae (Anura: Hylidae). Acta Herpetol. 8: 93-97.

Barriga-VallejoC.Hernández-GallegosO.HerbingI.H.V.López-MorenoA.E.Ruiz-GómezM.L.Granados-GonzalezG.Garduño-PazM.V.Méndez-SánchezJ.F.Banda-LeakJ.DavisA.K. (2015): Assessing population health of the toluca axolotl Ambystoma rivulare (Taylor, 1940) from Mexico, using leukocyte profiles. Herpetol. Conserv. Bio. 10: 592-601.

BiswasH.M.BoralM.C. (1986): Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude. Int. J. Biometeorol. 30: 189-197.

CoxR.M.ButlerM.A.John-AlderH.B. (2007): The evolution of sexual size dimorphism in reptiles. In: Sex Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism p.  38-49. FairbairnD.J.BlanchnhornW.U.SzékelyT. Eds Oxford University PressOxford.

DavisA.K. (2008): Ontogenetic changes in erythrocyte morphology in larval mole salamanders, Ambystoma talpoideum, measured with image analysis. Comp. Clin. Pathol. 17: 23-28.

DavisA.K. (2009): The Wildlife Leukocytes webpage: the ecologist’s source for information about leukocytes of wildlife species. Available at http://wildlifehematology.uga.edu/ (accessed 4 May 2017).

DavisA.K.CookK.C.AltizerS. (2004): Leukocyte profiles of house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. Ecohealth 1: 362-373.

DavisA.K.MaerzJ.C. (2008): Sex-related differences in hematological stress indices of breeding paedomorphic mole salamanders. J. Herpetol. 42: 197-201.

DavisA.K.ManeyD.L.MaerzJ.C. (2008): The use of leukocyte profiles to measure stress in vertebrate: a review for ecologists. Funct. Ecol. 22: 760-772.

DessauerH.C. (1970): Blood chemistry of reptiles: physiological and evolutionary aspects. In: Biology of Reptiliavol. 3 p.  1-72. GansC.ParsonsT.S. Eds Academic PressNew York.

DingX.Z.LiangC.N.GuoX.WuX.Y.WangH.B. (2014): Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient. Livest. Sci. 162: 233-239.

FeiL.HuS.Q.YeC.Y.HuangY.Z. (2006): Fauna Sinica: Amphibiavol. 1. Science PressBeijing.

FinklerM.S. (2013): Sexual dimorphism in visceral organ mass and hematology in spotted salamanders, Ambystoma maculatum, before and after breeding. Copeia 2013: 338-345.

FoxonG.E.H. (1964): Blood and respiration. In: Physiology of the Amphibia p.  151-209. MooreI.A. Ed. Academic PressNew York.

FriedmannG.B. (1971): Altitudinal variation in the red blood cell count and haemoglobin content of urodele blood. Can. J. Zool. 49: 565-568.

FrostD.R. (2017): Amphibian species of the world: an online reference. Version 6.0. Electronic database accessible at http://research.amnh.org/herpetology/amphibia/index.html (accessed 31.5.2017). American Museum of Natural History New York USA.

FrýdlováP.HnízdoJ.ChylíkováL.ŠimkováO.CikánováV.VelenskýP.FryntaD. (2013): Morphological characteristics of blood cells in monitor lizards: is erythrocyte size linked to actual body size? Integr. Zool. S1: 39-45.

González-MoralesJ.C.QuintanaE.Díaz-AlbiterH.Guevara-FioreP.FajardoV. (2015): Is erythrocyte size a strategy to avoid hypoxia in Wiegmann’s torquate lizards (Sceloporus torquatus)? Field evidence. Can. J. Zool. 93: 377-382.

GouldS. (1975): Allometry in primates, with emphasis on scaling and evolution of the brain. In: Approaches to Primate Paleobiology p.  244-292. SzalayF.S. Ed. KargerBasel, Switzerland.

GrenatP.R.BiondaC.SalasN.E.MartinoA.L. (2010): Variation in erythrocyte size between juveniles and adults of Odontophrynus americanus. Amphibia-Reptilia 30: 141-145.

GuoK.J.MiX.Q.DengX.J. (2008): Breeding ecology of Hynobius guabangshanensis. Chin. J. Ecol. 27: 77-82.

HansenM.J. (2005): A method for correcting the relative weight (Wr) index for seasonal patterns in relative condition (Kn) with length as applied to walleye in Wisconsin. N. Am. J. Fish. Manage. 25: 1256-1262.

HasumiM. (1994): Reproductive behavior of the salamander Hynobius nigrescens: monopoly of egg sacs during scramble competition. J. Herpetol. 28: 264-267.

HasumiM. (2015): Social interactions during the aquatic breeding phase of the family Hynobiidae (Amphibia: Caudata). Acta Ethol. 18: 243-253.

HeJ.Z.XiuM.G.TangX.L.YueF.WangN.B.YangS.B.ChenQ. (2013): The different mechanisms of hypoxic acclimatization and adaptation in lizard Phrynocephalus vlangalii living on Qinghai-Tibet plateau. J. Exp. Zool. Part A 319: 117-123.

HuangM.Y.ZhangY.H.WangH.Y. (2004): Hematological studies on stream salamander (Batrachuperus tibetanus). J. Shaanxi Norm. Univ. (Nat. Sci. Edit.) 32: 87-90.

HutchisonV.HainesH.EngbretsonG. (1976): Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Resp. Physiol. 27: 115-129.

iCALIBUR (2014): BioLife Std. Beijing iCALIBUR Research & Development Center.

IUCN (2016): The IUCN Red List of Threatened Species. Version 2016-3. http://www.iucnredlist.org. Downloaded on 07 December 2016.

JakobE.M.MarshallS.D.UetzG.W. (1996): Estimating fitness: a comparison of body condition indices. Oikos 77: 61-67.

JiangZ.G.JiangJ.P.WangY.Z.ZhangE.ZhangY.Y.LiL.L.XieF.CaiB.CaoL.ZhengG.M.DongL.ZhangZ.W.DingP.LuoZ.H.DingC.Q.MaZ.J.TangS.H.CaoW.X.LiC.W.HuH.J.MaY.WuY.WangY.X.ZhouK.Y.LiuS.Y.ChenY.Y.LiJ.T.FengZ.J.WangY.WangB.LiC.SongX.L.CaiL.ZangC.X.ZengY.MengZ.B.FangH.X.PingX.G. (2016): Red list of China’s vertebrates. Biodivers. Sci. 24: 500-551.

KaminskiP.JerzakL.SparksT.H.JohnstonA.BochenskiM.KasprzakM.WiśniewskaE.MroczkowskiS.TryjanowskiP. (2014): Sex and other sources of variation in the haematological parameters of white stork Ciconia ciconia chicks. J. Ornithol. 155: 307-314.

KhanT.A.ZafarF. (2005): Haematological study in response to varying doses of estrogen in broiler chicken. Int. J. Poul. Sci. 4: 748-751.

KocaY.B.KocaS.OlgunK.BevtasP.ÜzümN.T. (2006): Blood cell morphology, erythrocyte size, and micronucleus counts of Neurergus crocatus (Cope, 1862) (Urodela: Salamandridae) in Turkey. Russ. J. Herpetol. 13: 83-88.

KupferA. (2007): Sexual size dimorphism in amphibians: an overview. In: Sex Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism p.  50-60. FairbairnD.J.BlanchnhornW.U.SzékelyT. Eds Oxford University PressOxford.

KuramotoM. (1981): Relationships between number size and shape of red blood cells in amphibians. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 69: 771-775.

LuS.S.XinY.TangX.L.YueF.WangH.H.BaiY.C.NiuY.G.ChenQ. (2015): Differences in hematological traits between high- and low-altitude lizards (genus Phrynocephalus). PLoS ONE 10: e0125751.

MaD.B. (2005): Morphological parameter of blood cells in Hynobius leechii Boulenger and Salamandrella keyserlingii. J. Harbin Univ. 26: 123-124.

MaD.B.WuW.F.WeiH. (2003): Morphological parameter of blood cells in Hynobius leechii Boulenger and Cynops orientalis David. J. Sci. Teachers’ Coll. Univ. 23: 44-45.

MahapatraB.B.DasM.DuttaS.K.MahapatraP.K. (2012): Hematology of Indian rhacophorid tree frog Polypedates maculatus Gray, 1833 (Anura: Rhacophoridae). Comp. Clin. Pathol. 21: 453-460.

MeesawatS.KitanaN.KitanaJ. (2016): Hematology of wild caught Hoplobatrachus rugulosus in northern Thailand. Asian Herpetol. Res. 7: 131-138.

NikinmaaM.M. (1997): Oxygen and carbon dioxide transport in vertebrate erythrocytes: an evolutionary change in the role of membrane transport. J. Exp. Biol. 200: 369-380.

ParkD.ParkS.-R. (2000): Multiple insemination and reproductive biology of Hynobius leechii. J. Herpetol. 34: 594-598.

ParkS.-R.ParkD.-S.YangS.Y. (1996): Courtship, fighting behaviors and sexual dimorphism of the salamander, Hynobius leechii. Korean J. Zool. 39: 437-446.

RaffelT.R.RohrJ.R.KieseckerJ.M.HudsonP.J. (2006): Negative effects of changing temperature on amphibian immunity under field conditions. Funct. Ecol. 20: 819-828.

RuizG.RosenmannM.NunezH. (1993): Blood values in South American lizards form high and low altitudes. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 106: 713-718.

RuizG.RosenmannM.VelosoA. (1983): Respiratory and hematological adaptations to high altitude in Telmatobius frogs from the Chilean Andes. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 76: 109-113.

RuizG.RosenmannM.VelosoA. (1989): Altitudinal distribution and blood values in the toad, Bufo spinulosus Wiegmann. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 94: 643-646.

SarasolaJ.H.NegroJ.J.TravainiA. (2004): Nutritional condition and serum biochemistry for free-living Swainson’s hawks wintering in central Argentina. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 137: 697-701.

SeamanD.A.GuglielmoC.G.WilliamsT.D. (2005): Effects of physiological state, mass change and diet on plasma metabolite profiles in the western sandpiper Calidris mauri. J. Exp. Biol. 208: 761-769.

ShineR. (1979): Sexual selection and sexual dimorphism in Amphibia. Copeia 1979: 297-306.

SztatecsnyM.SchabetsbergerR. (2005): Into thin air: vertical migration, body condition, and quality of terrestrial habitats of alpine common toads, Bufo bufo. Can. J. Zool. 83: 788-796.

TokC.V.TosunoğluM.AyazD.ÇiçekK.GülÇ. (2009): Hematology of the Lycian salamander, Lyciasalamandra fazilae. North-West J. Zool. 5: 321-329.

TosunoğluM.GülÇ.Uysalİ. (2013): Hematology of Triturus karelinii (Strauch, 1870) from Gallipoli, Turkey. Herpetozoa 25: 157-159.

TosunoğluM.TokC.V.OlgunK.ÖzdemirN.GülÇ. (2011): Hematology of the northern banded newt, Ommatotrition ophryticus (Amphibia: Urodela), from north Anatolia. Russ. J. Herpetol. 18: 59-64.

VaissiS.PartoP.SharifiM.HaghighiZ.M.S. (2012): Variations in the size of erythrocytes in the blood of Neurergus kaiseri and Neurergus microspilotus from Iran. Salamandra 48: 193-197.

WangL.W. (1996): Observation on the morphology of blood cell and test of blood of Hynobius leechii. J. Shengyang Teachers Coll. (Nat. Sci.) 14: 53-57.

WaughA.GrantA. (2001): Anatomy and Physiology in Health and Illness9th Edition. Churchill Livingstone.

WyckoffS.M.FraseB.A. (1990): Hematological adaptation to hypoxia in Peromyscus and Microtus at high and low altitude. T. Illinois State Acad. Sci. 83: 197-205.

XinG.S.LongR.J.GuoX.S.IrvineJ.DingL.M.DingL.L.ShangZ.H. (2011): Blood mineral status of grazing Tibetan sheep in the northeast of the Qinghai-Tibetan Plateau. Livest. Sci. 136: 102-107.

YeX.F.ZhangJ.J.YuanL.WangX.L. (2012): Study on the hematology of Ranodon sibiricus. Xinjiangxumuye 11: 33-36.

ZhangH.J.XieC.X.LiD.P.XiongD.M.LiuH.P.SuolangS.Z.ShangP. (2010): Haematological and blood biochemical characteristics of Glyptosternum maculatum (Siluriformes: Sisoridae) in Xizang (Tibet). Fish Physiol. Biochem. 36: 797-801.

ZhelevZ.M.MehterovN.H.PopgeorgievG.S. (2016): Seasonal changes of basic erythrocyte-metric parameters in Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in southern Bulgaria and their role as bioindicators. Ecotox. Environ. Safe. 124: 406-417.

ZhelevZ.M.PopgeorgievG.S.MehterovN.H. (2015): Haematological parameters of Pelophylax ridibundus (Amphibia: Ranidae) from the region of the lead and zinc plant “Kardzhali” (south Bulgaria) and their use in the environmental quality assessment. Acta Zool. Bulg. 67: 271-282.

Figures

  • View in gallery

    Light micrographs showing the different types of blood cells of B. pinchonii. (A) erythrocyte, (B) large lymphocyte, (C) small lymphocyte, (D) monocyte, (E) eosinophil and lymphocyte, (F) basophil, (G) neutrophil, (H) thrombocyte.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 14
Full Text Views 8 8 7
PDF Downloads 3 3 2
EPUB Downloads 0 0 0