Skewed sex ratio in a forest salamander: artefact of the different capture probabilities between sexes or actual ecological trait?

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Sex ratio is an essential demographic parameter and distortions from a balanced sex ratio may have contrasting effects on the population dynamics. However, observation of distorted sex ratio using counts or captures may reflect an actual ecological trait of the studied population but may also be an artefact due to different capture probabilities of males and females. We compared results obtained from Counts and Capture-Marking-Recapture (CMR) on both sexes in a population of a forest dwelling salamander, Salamandrina perspicillata, and we investigated if males and females had different capture probabilities. We surveyed available literature to compare information on sex ratio from other populations of S. perspicillata. The sex ratio from our counts was 0.65 and was significantly male-biased as reported in other studies. The estimated sex ratio from CMR data was 0.57. Although males showed higher recapture rates than females in every capture session, these differences were not statistically significant. Therefore, the skewed sex ratio towards males is not only an artefact due to different capture probabilities between males and females but reflects an actual demographic trait, although the magnitude of the skeweness was overestimated by counts.

Skewed sex ratio in a forest salamander: artefact of the different capture probabilities between sexes or actual ecological trait?

in Amphibia-Reptilia



AkaikeH. (1973): Information theory and an extension of the maximum likelihood principle. In: Proceedings of the Second International Symposium Information Theory p.  267-281. PetrovB.N.CazakilF. Eds Akademiai KidaoBudapest.

AlhoJ.S.HerczegG.MerilaJ. (2008): Female-biased sex ratios in subarctic common frogs. J. Zool. 275: 57-63.

AnconaS.DénesF.V.KrugerO.SzékelyT.BeissingerS.R. (2017): Estimating adult sex ratios in nature. Phil. Trans. R. Soc. B 372: 20160313.

AnderssonM. (1994): Sexual Selection. Princeton University PressPrinceton, NJ.

BasileM.RomanoA.CostaA.PosillicoM.Scinti RogerD.CrisciD.RaimondiR.AlteaT.GarfìV.SantopuoliG.MarchettiM.De CintiB.MatteucciG. (2017): Seasonality and microhabitat selection in a forest-dwelling salamander. The Science of Nature – Naturwissenschaften 104: 80. DOI:10.1007/s00114-017-1500-6.

BoveroS.AngeliniC.UtzeriC. (2006): Aging Salamandrina perspicillata (Savi, 1821) by skeletochronology. Acta Herpetol. 1: 153-158.

BryjaJ.NesvadbováJ.HeroldováM.JánováE.LosíkJ.TkadlecE. (2005): Common vole (Microtus arvalis) population sex ratio: biases and process variation. Can. J. Zool. 83: 1391-1399.

CaballeroA. (1994): Developments in the prediction of effective population size. Heredity 73: 657-679.

CostaA.BasileM.CrisciA.Scinti RogerD.PosillicoM.BalestrieriR.AlteaT.De CintiB.MatteucciG.SoppelsaO.RomanoA. (2015): Assessing the abundance of Salamandrina perspicillata (Savi, 1821) using spatially and temporally replicated count data. In: Atti X Congresso Nazionale Societas Herpetologica Italica p.  63-69. DoriaG.PoggiR.SalvidioS.TavanoM. Eds Ianieri EdizioniPescara.

DonaldP.F. (2007): Adult sex ratios in wild bird populations. Ibis 149: 671-692.

DrickamerL.C.FeldhamerG.A.MikesicD.G.HolmesC.M. (1999): Trap-response heterogeneity of house mice (Mus musculus) in outdoor enclosures. J. Mamm. 80: 410-420.

EdwardsA.W.F. (2000): Carl Dusing (1884) on the regulation of the sex ratio. Theor. Popul. Biol. 58: 255-257.

FisherR.A. (1930): The Genetical Theory of Natural Selection. Oxford University PressOxford.

GodfrayH.C.J.WerrenJ.H. (1996): Recent development in sex ratio studies. Trends Ecol. Evol. 11: 59-63.

GyllenbergM.HanskiI.HastingsA. (1997): Structured metapopulation models. In: Metapopulation Biology: Ecology Genetics and Evolution p.  93-122. HanskiI.GilpinM.E. Eds Academic PressLondon.

HallidayR.VerrellP.A. (1988): Body size and age in amphibians and reptiles. J. Herpetol. 22: 253-265.

HardyI.C.W. (2002): Sex Ratios: Concepts and Research Methods. Cambridge University PressCambridge.

JaatinenK.LehikoinenA.LankD.B. (2010): Female biased sex ratios and the proportion of cryptic male morphs of migrant juvenile ruffs (Philomachus pugnax) in Finland. Ornis Fenn. 87: 125-134.

KikkawaJ. (1964): Movement, activity and distribution of the small rodents Clethrionomys glareolus and Apodemus flavicollis in woodland. J. Anim. Ecol. 33: 259-299.

KupferA. (2007): Sexual size dimorphism in amphibians: an overview. In: Sex Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism p.  50-60. FairbairnD.J.BlanckenhornW.U.SzekelyT. Eds Oxford University PressNew York.

KvarnemoC.AhnesjoI. (1996): The dynamics of operational sex ratios and competition for mates. Trends Ecol. Evol. 11: 404-408.

LanzaB. (1983): Genere Salamandrina. In: Anfibi Rettili: guide per il riconoscimento delle specie animali delle acque interne italiane n. 27 p.  64-70. RuffoS. Ed. Consiglio Nazionale delle RicercheRome, Italy.

LeeA.M.SaetherB.-E.EngenS. (2011): Demographic stochasticity, Allee effects, and extinction: the influence of mating system and sex ratio. Am. Nat. 177: 301-313.

MoyaO.MansillaP.L.MadrazoS.IgualJ.M.RotgerA.RomanoA.TavecchiaG. (2015): APHIS: a new software for photo-matching in ecological studies. Ecological Informatics 27: 64-70.

OtisD.BurnhamK.P.WhiteG.C.AndersonD.R. (1978): Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62: 1-135.

PenI.WeissingF.J. (2002): Optimal sex allocation: steps towards a mechanistic theory. In: Sex Ratios: Concepts and Research Methods p.  26-45. HardyI.C.W. Ed. Cambridge University PressCambridge.

PiracciniR.CammaranoM.CostaA.BasileM.PosillicoM.BoitaniL.BaschettoM.MatteucciG.De CintiB.RomanoA. (2017): Habitat trees and salamanders: conservation and management implications in temperate forests. Forest Ecol. Manage. 384: 17-25.

RomanoA.Scinti RogerD.AvellaI. (2017): Body malformations in a forest-dwelling salamander, Salamandrina perspicillata (Savi, 1821). Herpetol. Cons. Biol. 12: 16-23.

RomanoA.CostaA.BasileM.RaimondiR.PosillicoM.Scinti RogerD.CrisciA.PiracciniR.RaiaP.MatteucciG.De CintiB. (2017): Conservation of salamanders in managed forests: methods and costs of monitoring abundance and habitat selection. Forest Ecol. Manage. 400: 12-18.

RomanoA.BruniG.PaolettiC. (2009): Sexual dimorphism in the Italian endemic species Salamandrina perspicillata (Savi, 1821) and testing of a field method for sexing salamanders. Amphibia-Reptilia 30: 425-434.

RomanoA.MattocciaM.MartaS.BogaertsS.PasmansF.SbordoniV. (2009): Distribution and morphological characterisation of the endemic Italian salamanders Salamandrina perspicillata (Savi, 1821) and S. terdigitata (Bonnaterre, 1789) (Caudata: Salamandridae). It. J. Zool. 76: 422-432.

SalvidioS. (2008): Temporal variation in adult sex ratio in a population of the terrestrial salamander Speleomantes strinatii. Herpetol. J. 18: 66-68.

SalvidioS.RomanoA.OnetoF.OttonelloD.MichelonR. (2012): Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 43: 42-50.

SequeiraF.GonçalvesH.FariaM.M.MenesesV.ArntzenJ.W. (2001): Habitat-structural and meteorological parameters influencing the activity and local distribution of the golden-striped salamander, Chioglossa lusitanica. Herpetol. J. 11: 85-90.

SzékelyT.WeissingF.J.KomdeurJ. (2014): Adult sex ratio variation: implications for breeding system evolution. J. Evol. Biol. 27: 1500-1512.

TriversR.L.WillardD.E. (1973): Natural selection of parental ability to vary the sex ratio of offspring. Science 191: 249-263.

VanniS.NistriA.ZagaglioniS. (1997): Use of the ‘pattern mapping’ technique to study the biology of Salamandrina terdigitata (Amphibia Caudata Salamandridae). Atti Soc. Tosc. Sc. Nat. Mem. (B) 103: 111-112.

VignoliL.SiliciR.BrizziR.BolognaM. (2010): In vivo sexual discrimination in Salamandrina perspicillata: a cross-check analysis of annual changes in external cloacal morphology and spermic urine release. Herpetol. J. 20: 17-24.

WellsK.D. (2010): The Ecology and Behavior of Amphibians. University of Chicago PressChicago.

WhiteG.C.BurnhamK.P. (1999): Program MARK: survival estimation from population of marked animals. Bird Study 46 (Suppl.): 120-139. Program MARK is available at

WilsonK.HardyI.C.W. (2002): Statistical analysis of sex ratios: an introduction. In: Sex Ratios: Concepts and Research Methods p.  48-92. HardyI.C.W. Ed. Cambridge University PressCambridge.

YoccozN.G.SteenH.ImsR.A.StensethN.C. (1993): Estimating demographic parameters and the population size: an updated methodological survey. In: The Biology of Lemmings p.  565-587. StensethN.C.ImsR.A. Eds Academic PressLondon.

ZugG.R.VittL.J.CaldwellJ.P. (2001): Herpetology: an Introductory Biology of Amphibians and Reptiles2nd Edition. Academic PressSan Diego, CA.


  • View in gallery

    Percentage of individual captures (1) and recaptures (2-4) of males (n = 194) and females (n = 103) during six sampling occasions in a population of Salamandrina perspicillata in the Montedimezzo Nature Reserve (Central Italy).

  • View in gallery

    Mean capture probabilities (and 95% C.I.) of males and females during six sampling occasions in a population of Salamandrina perspicillata in the Montedimezzo Nature Reserve (Central Italy).

  • View in gallery

    Estimated effect sizes from studies reporting skewed sex ratio in Salamandrina. The prism shows the overall estimated incidence rate, from random effect model.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 8 8 4
Full Text Views 10 10 8
PDF Downloads 5 5 3
EPUB Downloads 0 0 0