The study of larval tail morphology reveals differentiation between two Triturus species and their hybrids

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

In amphibians, morphological differentiation and disparity at the larval and post-metamorphic ontogenetic stages can diverge, owing to various contrasting environments and different selective pressures. In the monophyletic clade of nine Triturus newt species, five different morphotypes can be recognized, but information on larval morphology is limited. Here we explore divergence of larval morphology in Triturus ivanbureschi, T. macedonicus, and their F1 hybrids. These two genetically and morphologically distinct crested newt species hybridize in nature and form a relatively wide hybrid zone in the central part of the Balkan Peninsula. Using a geometric morphometric approach and multivariate statistics, we evaluated differences of tail size and shape, colouration pattern, and the presence of a tail filament at the mid-larval stage in larvae reared under controlled laboratory conditions. We chose the tail as the main propulsive organ crucial for locomotion, feeding, and escaping predators. We found that Triturus ivanbureschi and T. macedonicus larvae differ in tail shape, but not in tail size. Two groups of F1 hybrid larvae (obtained from reciprocal crossing) were similar to each other, but differed from the parental species in size and shape of the tail, colouration pattern, and the presence of a tail filament. Our results indicate that, like adults, larvae diverge morphologically and hybrid larvae do not exhibit intermediate morphology of the parental species.

The study of larval tail morphology reveals differentiation between two Triturus species and their hybrids

in Amphibia-Reptilia

Sections

References

AckerlyK.L.WardA.B. (2015): Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum). Zoology. 118: 394-402.

ArntzenJ.W. (2003): Triturus cristatus Superspecies – Kammolch-Artenkreis (Triturus cristatus (Laurenti, 1768) – Nördlicher Kammolch, Triturus carnifex (Laurenti, 1768) – Italienischer Kammolch, Triturus dobrogicus (Kiritzescu, 1903) – Donau-Kammolch, Triturus karelinii (Strauch, 1870) – Südlicher Kammolch). In: Handbuch der Reptilien und Amphibien Europas. Schwanzlurche IIA p.  421-514. BöhmeW. Ed. Aula-VerlagWiebelsheim.

ArntzenJ.W.WallisG.P. (1994): The ‘wolterstorff index’ and its value to the taxonomy of the crested newt superspecies. Abh. Ber. Naturk. 17: 57-66.

ArntzenJ.W.WallisG.P. (1999): Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): morphological and mitochondrial data. Contribut. Zool. 68: 181-203.

ArntzenJ.W.JehleR.BardakciF.BurkeT.WallisG.P. (2009): Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. marmoratus). Evolution. 63: 1191-1202.

ArntzenJ.W.WielstraB.WallisG.P. (2014): The modality of nine Triturus newt hybrid zones assessed with nuclear, mitochondrial and morphological data. Biol. J. Linn. Soc. 113: 604-622.

ArntzenJ.W.BeukemaW.GalisF.IvanovićA. (2015): Vertebral number is highly evolvable in salamanders and newts (family Salamandridae) and variably associated with climatic parameters. Contribut. Zool. 84: 85-113.

BredeE.G.ThorpeR.S.ArntzenJ.W.LangtonT.E.S. (2000): A morphometric study of a hybrid newt population (Triturus cristatus/T. carnifex): Beam Brook Nurseries, Surrey, UK. Biol. J. Linn. Soc. 70: 685-695.

Crnobrnja-IsailovićJ.DžukićG.KrstićN.KalezićM.L. (1997): Evolutionary and paleogeographical effects on the distribution of the Triturus cristatus superspecies in the central Balkans. Amphibia-Reptilia. 18: 321-332.

CvijanovićM.IvanovićA.KalezićM.L.ZelditchM.L. (2014): The ontogenetic origins of skull shape disparity in the Triturus cristatus group. Evol. Dev. 16: 306-317.

CvijanovićM.IvanovićA.KalezićM.L. (2015): Larval pigmentation patterns of closely related newt species (Triturus cristatus and T. dobrogicus) in laboratory conditions. North-West. J. Zool. 11: 357-359.

DrydenI.L.MardiaK.V. (1998): Statistical Analysis of Shape. Wiley.

DžukićG.VukovT.D.KalezićM.L. (2016): The Tailed Amphibians of Serbia. Belgrade. Serbian Academy of Science and Arts.

EscorizaD.HassineJ.B. (2017): Comparative larval morphology in three species of Pleurodeles (Urodela: Salamandridae). Zootaxa. 4237: 587-592.

Francillon-VieillotH.ArntzenJ.W.GéraudieJ. (1990): Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. J. Herpetol. 24: 13-22.

GlücksohnS. (1932): Äußere Entwicklung der Extremitäten und Stadieneinteilung der Larvenperiode von Triton taeniatus Leyd. und von Triton cristatus Laur. Wilhelm Roux’ Archiv f. Entwicklungsmechanik d. Organismen. 125: 341-405.

GovedaricaP.CvijanovićM.SlijepčevićM.IvanovićA. (2017): Trunk elongation and ontogenetic changes in the axial skeleton of Triturus newts. J. Morphol. DOI:10.1002/jmor.20733.

IvanovićA.ArntzenJ.W. (2014): Evolution of skull and body shape in Triturus newts reconstructed from three-dimensional morphometric data and phylogeny. Biol. J. Linn. Soc. 113: 243-255.

IvanovićA.VukovT.D.DžukićG.TomaševićN.KalezićM.L. (2007): Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: a case study in six Triturus species (Amphibia, Salamandridae). Zoomorphology. 126: 173-183.

IvanovićA.SotiropoulosK.VukovT.D.EleftherakosK.DžukićG.PolymeniR.M.KalezićM.L. (2008a): Cranial shape variation and molecular phylogenetic structure of crested newts (Triturus cristatus superspecies: Caudata, Salamandridae) in the Balkans. Biol. J. Linn. Soc. 95: 348-360.

IvanovićA.TomaševićN.DžukićG.KalezićM.L. (2008b): Evolutionary diversification of the limb skeleton in crested newts (Triturus cristatus superspecies, Caudata, Salamandridae). Ann. Zool. Fenn. 45: 527-535.

IvanovićA.CvijanovićM.KalezićM.L. (2011): Ontogeny of body form and metamorphosis: insights from the crested newts. J. Zool. 283: 153-161.

IvanovićA.ÜzümN.WielstraB.OlgunK.LitvinchukS.N.KalezićM.L.ArntzenJ.W. (2013): Is mitochondrial DNA divergence of near eastern crested newts (Triturus karelinii group) reflected by differentiation of skull shape?. Zool. Anz. 252: 269-277.

KlingenbergC.P. (2011): MorphoJ: an integrated software package for geometric morphometrics. Mol. Eco. Resour. 11: 353-357.

LaurilaA.KarttunenS.MeriläJ. (2002): Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations. Evolution. 56: 617-627.

LitvinchukS.N.BorkinL.J. (2009): Evolution Systematics and Distribution of Crested Newts (Triturus Cristatus Complex) in the Territory of Russia and Adjacent Countries. Evropeyskiy domSt. Petersburg.

LiuH.WassersugR.KawachiK. (1996): A computational fluid dynamics study of tadpole swimming. J. Exp. Biol. 199: 1245-1260.

MonteiroL.R. (1999): Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst. Biol. 48: 192-199.

MullinS.K.TaylorP.J. (2002): The effects of parallax on geometric morphometric data. Comput. Biol. Med. 32: 455-464.

PfennigK.S.ChuncoA.J.LackeyA.C. (2007): Ecological selection and hybrid fitness: hybrids succeed on parental resources. Evol. Ecol. Res. 9: 341-354.

RatnikovV.Y.LitvinchukS.N. (2007): Comparative morphology of trunk and sacral vertebrae of tailed amphibians of Russia and adjacent countries. Russ. J. Herpetol. 14: 177-190.

RatnikovV.Y.LitvinchukS.N. (2009): Atlantal vertebra of tailed amphibians of Russia and adjacent countries. Russ. J. Herpetol. 16: 57-68.

RohlfF.J. (2006): tpsDig version 2.26. State Univ. of New York Stony Brook New York. Available at: http://life.bio.sunysb.edu/morph/.

RohlfF.J.SliceD. (1990): Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39: 40-59.

SchmidtB.R.Van BuskirkJ. (2005): A comparative analysis of predator-induced plasticity in larval Triturus newts. J. Evolution. Biol. 18: 415-425.

SheetsH.D. (2000): Integrated morphometrics package (IMP). Available at: http://www2.canisius.edu/~sheets.

SherrattE.Vidal-GarcíaM.AnstisM.KeoghJ.S. (2017): Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1: e1385.

SlijepčevićM.GalisF.ArntzenJ.W.IvanovićA. (2015): Homeotic transformations and number changes in the vertebral column of Triturus newts. PeerJ. 3: e1397.

SmithA.B.LittlewoodD.T.J.WrayG.A. (1995): Comparing patterns of evolution: larval and adult life history stages and ribosomal RNA of post-Palaeozoic echinoids. Philos. T. Roy. Soc. B. 349: 11-18.

SpurwayH. (1953): Genetics of specific and subspecific differences in European newts. In: Symposia of the Society for Experimental Biology Number VII. Evolution. Cambridge University Press.

Tomašević KolarovN.IvanovićA.KalezićM.L. (2011): Morphological integration and ontogenetic niche shift: a study of crested newt limbs. J. Exp. Zool. Part B. 316: 296-305.

UroševićA.SlijepčevićM.D.ArntzenJ.W.IvanovićA. (2016): Vertebral shape and body elongation in Triturus newts. Zoology. 119: 439-446.

ValléeL. (1959): Recherches sur Triturus blasii de l’Isle, hybride naturel de Triturus cristatus Laur. x Triturus marmoratus Latr. B. Soc. Zool. Fr. 31: 1-95.

Van BuskirkJ. (2009): Natural variation in morphology of larval amphibians: phenotypic plasticity in nature?. Ecol. Monogr. 79: 681-705.

Van BuskirkJ. (2011): Amphibian phenotypic variation along a gradient in canopy cover: species differences and plasticity. Oikos. 120: 906-914.

Van BuskirkJ.McCollumS.A. (2000): Functional mechanisms of an inducible defense in tadpoles: morphology and behavior influence mortality risk from predation. J. Evolution. Biol. 13: 336-347.

Van BuskirkJ.SchmidtB.R. (2000): Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology. 81: 3009-3028.

Van BuskirkJ.McCollumS.A.WernerE.E. (1997): Natural selection for environmentally induced phenotypes in tadpoles. Evolution. 51: 1983-1992.

Van BuskirkJ.AnderwaldP.LüpoldS.ReinhardtL.SchulerH. (2003): The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herpetol. 37: 420-424.

VinšálkováT.GvoždíkL. (2007): Mismatch between temperature preferences and morphology in F1 hybrid newts (Triturus carnifex × T. dobrogicus). J. Therm. Biol. 32: 433-439.

VukovT.D.SotiropoulosK.WielstraB.DžukićG.KalezićM.L. (2011): The evolution of the adult body form of the crested newt (Triturus cristatus superspecies, Caudata, Salamandridae). J. Zool. Syst. Evol. Res. 49: 324-334.

WassersugR.J. (1989): Locomotion in amphibian larvae (or “Why aren’t tadpoles built like fishes?”). Am. Zool. 29: 65-84.

WassersugR.J.HoffK.V.S. (1985): The kinematics of swimming in anuran larvae. J. Exp. Biol. 119: 1-30.

WebbP.W. (1984): Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24: 107-120.

WeihsD. (1989): Design features and mechanics of axial locomotion in fish. Am. Zool. 29: 151-160.

WielstraB.ArntzenJ.W. (2011): Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol. Biol. 11: 162.

WielstraB.ArntzenJ.W. (2012): Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models. BMC Evol. Biol. 12: 161.

WielstraB.ArntzenJ.W. (2014): Kicking Triturus arntzeni when it’s down: large-scale nuclear genetic data confirm that newts from the type locality are genetically admixed. Zootaxa. 3802: 381-388.

WielstraB.ArntzenJ.W. (2016): Description of a new species of crested newt, previously subsumed in Triturus ivanbureschi (Amphibia: Caudata: Salamandridae). Zootaxa. 4109: 73-80.

WielstraB.Crnobrnja-IsailovićJ.LitvinchukS.N.ReijnenB.T.SkidmoreA.K.SotiropoulosK.ToxopeusA.N.TzankovN.VukovT.ArntzenJ.W. (2013): Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling. Front. Zool. 10: 13.

WielstraB.DuijmE.LaglerP.LammersY.MeilinkW.R.M.ZiermannJ.M.ArntzenJ.W. (2014): Parallel tagged amplicon sequencing of transcriptome-based genetic markers for Triturus newts with the ion torrent next-generation sequencing platform. Mol. Ecol. Resour. 14: 1080-1089.

WiensJ.J.BonettR.M.ChippindaleP.T. (2005): Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst. Biol. 54: 91-110.

WolterstorffW. (1923): Übersicht den Unterarten und Formen des Triton cristatus Laur. Blätter für Aquarien- und Terrarien-kunde. 34: 120-126.

Figures

  • View in gallery

    Analysed morphometric traits. (a) Location of landmarks of larval tail shape. (b) Analysed tail traits and linear measurements: tail length (TL), maximum tail height (MTH), tail muscle height (TMH).

  • View in gallery

    Position of larvae in morphospace defined by the first two principal component axes. Confidence ellipses are sized to comprise 75% probability that new sampling would overlap the calculated group’s mean tail shape. The wireframe graph describes shape changes between individuals with maximal scores on the PC1 and PC2 axes. Grey – mean shape; black – shape corresponding to the maximal positive and negative scores. Species acronyms: T. ivanbureshi-T. iva; T. macedonicus-T. mac.

  • View in gallery

    Schematic presentation of character states for the chosen tail traits: marble colouration pattern (MCP), amount of the dark blotches on the tail edge (DBE), presence of dark blotches in the tail muscle area (DBM), and presence of a tail filament (TF). See text for detailed information on character states.

  • View in gallery

    Correspondence analysis ordination plot and position of the four analysed groups relative to the analysed traits: marble colouration pattern (MCP), amount of dark blotches on the tail edge (DBE), presence of dark blotches in the tail muscle area (DBM), and presence of a tail filament (TF).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 25 25 22
Full Text Views 13 13 10
PDF Downloads 5 5 3
EPUB Downloads 0 0 0