Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles?

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Recent studies have demonstrated the potential of combining molecular technologies with environmental sampling to detect various vertebrate species in aquatic ecosystems. The European pond turtle (Emys orbicularis) is a threatened and elusive aquatic reptile with shy behaviour. We aimed to develop and evaluate a methodology to detect the presence of this secretive aquatic reptile in ponds from environmental water samples. First, we determined that reptilian DNA can be isolated and amplified from water samples in artificial and natural ponds with known turtle density. Then we compared the potential of two water sampling methods (through filtration or precipitation) and found no significant differences between these approaches. Finally, we demonstrated that the eDNA concentration detected is not correlated with the number of E. orbicularis individuals or biomass. Detection of eDNA was higher in artificial ponds with small volumes of water or in the shallow waters of natural ponds. The eDNA-based methodology aims to detect the presence of specific species, even at low density, with better accuracy than visual observation. However, our study indicates that this method of population monitoring should be applied with caution to aquatic reptiles.

Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles?

in Amphibia-Reptilia



BarnesM.A.TurnerC.R.JerdeC.L.RenshawM.A.ChaddertonW.L.LodgeD.M. (2014): Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48: 1819-1827.

Beja-PereiraA.OliveiraR.AlvesP.C.SchwartzM.K.LuikartG. (2009): Advancing ecological understandings through technological transformations in noninvasive genetics. Mol. Ecol. Resour. 9: 1279-1301.

BiberE. (2011): The problem of environmental monitoring. Univ. Colorado Law Rev. 83: 1-82. BruynM. (2014): Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29: 358-367.

BustinS.A.BenesV.GarsonJ.A.HellemansJ.HuggettJ.KubistaM.MuellerR.NolanT.PfafflM.W.ShipleyG.L.VandersompeleJ.WittwerC.T. (2009): The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622.

CadiA.DelmasV.Prévot-JulliardA.C.JolyP.PieauC.GirondotM. (2004): Successful reproduction of the introduced slider turtle (Trachemys scripta elegans) in the south of France. Aquatic Conserv.: Mar. Freshw. Ecosyst. 14: 237-246.

DarlingJ.A.MahonA.R. (2011): From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111: 978-988.

DeagleB.E.EvesonJ.P.JarmanS.N. (2006): Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front. Zool. 3: 11.

DejeanT.ValentiniA.DuparcA.Pellier-CuitS.PompanonF.TaberletP.MiaudC. (2011): Persistence of environmental DNA in freshwater ecosystems. PLoS One 6: e23398.

EichmillerJ.J.MillerL.M.SorensenP.W. (2016): Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol. Ecol. Resour. 16: 56-68.

EllisonS.L.EnglishC.A.BurnsM.J.KerJ.T. (2006): Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol. 6: 33.

EvansN.T.OldsB.P.RenshawM.A.TurnerC.R.LiY.JerdeC.L.MahonA.R.PfrenderM.E.LambertiG.A.LodgeD.M. (2016): Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16: 29-41.

FicetolaG.F.MiaudC.PompanonF.TaberletP. (2008): Species detection using environmental DNA from water samples. Biol. Lett. 4: 423-425.

FicetolaG.F.PansuJ.BoninA.CoissacE.Giguet-CovexC.De BarbaM.GiellyL.LopesC.M.BoyerF.PompanonF.RayéG.TaberletP. (2015): Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15: 543-556.

FooteA.D.ThomasenP.F.SveegaardS.WahlbergM.KielgastJ.KyhnL.A.SallingA.B.GalatiusA.OrlandoL.GilbertM.T.P. (2012): Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One 7: e41781.

FritzU. (2003): Die Europäische Sumpfschildkröte. Laurenti VerlagBielefeld.

FritzU.ChiariY. (2013): Conservation actions for European pond turtles – a summary of current efforts in distinct European countries. Herpetol. Notes 6: 105-164.

GoldbergC.S.PilliodD.S.ArkleR.S.WaitsL.P. (2011): Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS One 6: e22746.

GoldbergC.S.SepulvedaA.RayA.BaumgardtJ.WaitsL.P. (2013): Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32: 792-800.

HaileJ.HoldawayR.OliverK.BunceM.GilbertM.T.P.NielsenR.MunchK.HoS.Y.W.ShapiroB.WillerslevE. (2007): Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24: 982-989.

JerdeC.L.MahonA.R.ChaddertonW.L.LodgeD.M. (2011): “Sight-unseen” detection of rare aquatic species using environmental DNA: eDNA surveillance of rare aquatic species. Conserv. Lett. 4: 150-157.

JohnM.E. (1992): An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Conserv. Lett. 4: 150-157.

KellyR.P.PortJ.A.YamaharaK.M.CrowderL.B. (2014a): Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9: e86175.

KellyR.P.PortJ.A.YamaharaK.M.MartoneR.LowellN.ThomsenP.F.MachM.E.BenettM.PrahlerE.CaldwellM.R.CrowderL.B. (2014b): Harnessing DNA to improve environmental management. Science 344: 1455-1456.

KnappM.HofreiterM. (2010): Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes 1: 227-243.

LindahlT. (1993): Instability and decay of the primary structure of DNA. Nature 362: 709-715.

MacKenzieD.I.NicholsJ.D.RoyleJ.A.PollockK.H.BaileyL.L.HinesJ.E. (2006): Occupancy Estimation and Modeling. Academic PressAmsterdam.

MahonA.R.JerdeC.L.GalaskaM.BergnerJ.L.ChaddertonW.L.LodgeD.M.HunterM.E.NicoL.G. (2013): Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One 8: e58316.

MathesonC.D.GurneyC.EsauN.LehtoR. (2010): Assessing PCR inhibition from humic substances. Open Enzyme Inhib. J. 3: 38-45.

McKeeA.M.SpearS.F.PiersonT.W. (2015): The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol. Conserv. 183: 70-76.

PiaggioA.J.EngemanR.M.HopkenM.W.HumphreyJ.S.KeacherK.L.BruceW.E.AveryM.L. (2014): Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol. Ecol. Resour. 14: 374-380.

PilliodD.S.GoldbergC.S.ArkleR.S.WaitsL.P. (2014): Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14: 109-116.

R Core Team (2016): R: a Language and Environment for Statistical Computing. R Foundation for Statistical ComputingVienna.

RousselJ.M.PaillissonJ.M.TréguierA.PetitE. (2015): The downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52: 823-826.

SchmidtB.R.KéryM.UrsenbacherS.HymanO.J.CollinsJ.P. (2013): Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4: 646-653.

SchneeweissN. (1997): Fang, Handel, und Aussetzung – historische und aktuelle Aspekte des Rückgangs der Europäischen Sumpfschildkröte (Emys orbicularis) in Brandenburg. Naturschutz und Landschaftspflege in Brandenburg 3: 76-81.

SchwartzM.K.LuikartG.WaplesR.S. (2007): Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22: 25-33.

SigsgaardE.E.CarlH.MøllerP.R.ThomsenP.F. (2015): Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183: 46-52.

StricklerK.M.FremierA.K.GoldbergC.S. (2015): Quantifiying effects of UV-B light, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183: 85-92.

TaberletP.GriffinS.GoossensB.QuestiauS.ManceauV.EscaravageN.WaitsL.P.BouvetJ. (1996): Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24: 3189-3194.

TaberletP.CoissacE.HajibabaeiM.RiesebergL.H. (2012): Environmental DNA. Mol. Ecol. 21: 1789-1793.

TakaharaT.MinamotoT.YamanakaH.DoiH.KawabataZ. (2012): Estimation of fish biomass using environmental DNA. PLoS One 7: e35868.

ThomsenP.F.KielgastJ.IversenL.L.MøllerP.R.RasmussenM.WillerslevE. (2012b): Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7: e41732.

ThomsenP.F.KielgastJ.IversenL.L.WiufC.RasmussenM.GilbertM.T.P.OrlandoL.WillerslevE. (2012a): Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21: 2565-2573.

ThomsenP.F.WillerslevE. (2015): Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183: 4-18.

TréguierA.PaillissonJ.M.DejeanT.ValentiniA.SchlaepferM.A.RousselJ.M. (2014): Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51: 871-879.

TurnerC.R.BarnesM.A.XuC.C.Y.JonesS.E.JerdeC.L.LodgeD.M. (2014): Particle size distribution and optimal capture of aqueous microbial eDNA. Methods Ecol. Evol. 5: 676-684.

TyreA.J.TenhumbergB.FieldS.A.NiejalkeD.ParrisK.PossinghamH.P. (2003): Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol. Appl. 13: 1790-1801.

VolkmannH.SchwartzT.KirchenS.StoferC.ObstU. (2007): Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol. Cell. Probes 21: 125-133.

VörösJ.MártonO.SchmidtB.R.GálJ.T.JelićD. (2017): Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS One 12: e0170945.

WilcoxT.M.McKelveyK.S.YoungM.K.JaneS.F.LoweW.H.WhiteleyA.R.SchwartzM.K. (2013): Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 8: e59520.

WillerslevE.CooperA. (2005): Ancient DNA. Proc. R. Soc. B. 272: 3-16.

WillerslevE.HansenA.J.BinladenJ.BrandT.B.GilbertM.T.P.ShapiroB.BunceM.WiufC.GilichinskyD.A.CooperA. (2003): Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300: 791-795.

YoccozN.G.BråthenK.A.GiellyL.HaileJ.EdwardsM.E.GoslarT.Von StedingkH.BrystingA.K.CoissacE.PompanonF.SønstebøJ.H.MiquelC.ValentiniA.De BelloF.ChaveJ.ThuillerW.WinckerP.CruaudC.GavoryF.RasmussenM.GilbertM.T.P.OrlandoL.BrochmannC.WillerslevE.TaberletP. (2012): DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21: 3647-3655.


  • View in gallery

    Rates of detection, visual observations and eDNA concentrations of Emys orbicularis in artificial and natural ponds with filtration and precipitation water sampling methods. The natural ponds are closed to each other and belong to the same natural reserve.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 21 21 17
Full Text Views 22 22 19
PDF Downloads 6 6 4
EPUB Downloads 0 0 0