Chasing the phantom: biogeography and conservation of Vipera latastei-monticola in the Maghreb (North Africa)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

The Maghreb region (North Africa) constitutes a major component of the Mediterranean Basin biodiversity hotspot. During the last centuries, a consistent human population growth has led to an unprecedented rate of habitat transformation and loss in the region and thus, threatening its biodiversity. The Western Mediterranean viper Vipera latastei-monticola inhabits humid and subhumid areas in the main mountain ranges of the Maghreb, facing such threatening factors; however, its elusive character and rarity hindered data collection for distinct biological purposes. Here, we study the biogeographical patterns and conservation status of the Maghrebian V. latastei-monticola resulting from recent sampling campaigns in Morocco and Tunisia. We update species distribution, and integrate phylogeographic and ecological niche modelling analyses at both species and lineage level to identify suitable areas, and to evaluate the impact of anthropogenic transformation and level of protection of their suitable space. We identified four highly divergent mitochondrial lineages, including a new lineage endemic to the Western High Atlas, with allopatric distributions and restricted to mountain ranges, supporting the role of mountains as past climatic refugia. Despite the remoteness of suitable areas, we report widespread habitat degradation and identify the low effectiveness of the current protected areas system in preserving the species and lineages range. Our study shows the urgent need to apply management actions for the long-term conservation of this vulnerable species and suggests a revaluation of the specific status of V. monticola, as these populations likely represent an ecotype of V. latastei.

  • Supplementary data

Chasing the phantom: biogeography and conservation of Vipera latastei-monticola in the Maghreb (North Africa)

in Amphibia-Reptilia

Sections

References

AllardG.BerrahmouniN.BesacierC.BoglioD.BriensM.BrizayA.CamiaA.CollettiL.ConigliaroM.D’AnnunzioR.DucciF.DuclercqM.DupuyJ.-L.FadyB.FagesB.GaravagliaV.GauthierM.GiraudJ.-P.HucR.González-MartínezS.GouriveauF.GraciaC.LefèvreF.MavsarR.MichelE.MilanoM.MooreB.MutkeS.MuysB.NumaC.PalahiM.PiazzettaR.PiquéM.PlanaE.RegoF.RigolotE.SalbitanoF.SanesiG.San-Miguel-AyanzJ.SebastiàM.SolanoD.ValdebarranoM.VayrandR.VendraminG.AnguitaG.BesacierC.ButtoudG.CaccianigaM.FlorianD.DurrantT.H.JonssonO.LegrosD.MarianoA.SantosV.SarmientoT.SarreA.SteiererF.VantommeP. (2013): State of Mediterranean Forests 2013. FAO.

AndersonR.P.RazaA. (2010): The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37: 1378-1393.

BarataM.CarranzaS.HarrisD.J. (2012b): Extreme genetic diversity in the lizard Atlantolacerta andreanskyi (Werner, 1929): a montane cryptic species complex. BMC Evol. Biol. 12: 167.

BarataM.PereraA.Martínez-FreiríaF.HarrisD.J. (2012a): Cryptic diversity within the Moroccan endemic day geckos Quedenfeldtia (Squamata: Gekkonidae): a multidisciplinary approach using genetic, morphological and ecological data. Biol. J. Linn. Soc. 106: 828-850.

BeukemaW.De PousP.DonaireD.EscorizaD.BogaertsS.ToxopeusA.G.De BieC.A.J.M.RocaJ.CarranzaS. (2010): Biogeography and contemporary climatic differentiation among Moroccan Salamandra algira. Biol. J. Linn. Soc. 101: 626-641.

BlondelJ.AronsonJ.BodiouJ.Y.BoeufG. (2010): The Mediterranean Region: Biological Diversity in Space and Time2nd Edition. Oxford University PressNew York.

BobackS.M. (2003): Body size evolution in snakes: evidence from island populations. Copeia 2003: 81-94.

BritoJ.C.SantosX.PleguezuelosJ.M.SilleroN. (2008a): Evolutionary scenarios with geostatistics and geographical information systems (GIS) for the viperid snakes Vipera latastei and Vipera monticola. Biol. J. Linn. Soc. 95: 790-806.

BritoJ.C.SantosX.PleguezuelosJ.M.FahdS.LlorenteG.A.ParelladaX. (2006): Morphological variability of the Lataste’s viper (Vipera latastei) and the Atlas dwarf viper (Vipera monticola): patterns of biogeographical distribution and taxonomy. Amphibia-Reptilia 27: 219-240.

BritoJ.C.FahdS.GeniezP.Martínez-FreiríaF.PleguezuelosJ.M.TrapeJ.F. (2011b): Biogeography and conservation of viperids from north-west Africa: an application of ecological niche-based models and GIS. J. Arid Environ. 75: 1029-1037.

BritoJ.C.FahdS.Martínez-FreiríaF.TarrosoP.LarbesS.PleguezuelosJ.M.SantosX. (2011a): Climate change and peripheral populations: predictions for a relict Mediterranean viper. Acta Herpetol. 6: 105-118.

Brito J.C.FericheM.HerreraT.KaliontzopoulouA.Martínez-FreiríaF.NesbittD.OmoloD.OntiverosD.QuiñozL.PleguezuelosJ.M.SantosX.SilleroN. (2008b): En los límites de su distribución: anfibios y reptiles paleárticos en el noroeste de Túnez. Bol. Asoc. Herpetol. Esp. 19: 1-8.

CanestrelliD.CimmarutaR.NascettiG. (2007): Phylogeography and historical demography of the Italian treefrog, Hyla intermedia, reveals multiple refugia, population expansions and secondary contacts within Peninsular Italy. Mol. Ecol. 16: 4808-4821.

CarvalhoS.B.BritoJ.C.CrespoE.J.PossinghamH.P. (2011): Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Divers. Distrib. 17: 408-421.

CharcoJ. (1999): El Bosque Mediterráneo en el Norte de África: Biodiversidad y Lucha Contra la Desertificación. Agencia Española de Cooperación InternacionalMadrid.

CheddadiR.NourelbaitM.BouaissaO.TabelJ.RhoujjatiA.López-SáezJ.A.Alba-SánchezF.KhaterC.BalloucheA.DezileauL.LambH. (2015): A history of human impact on Moroccan mountain landscapes. Afr. Archaeol. Rev. 32: 233-248.

ClementM.PosadaD.CrandallK.A. (2000): TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1659.

de PousP.BeukemaW.WeteringsM.DümmerI.GeniezP. (2011): Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: a preliminary assessment. Biodivers. Conserv. 20: 89-118.

DrummondA.J.HoS.Y.PhillipsM.J.RambautA. (2006): Relaxed phylogenetics and dating with confidence. PLOS Biol. 4: 699.

DrummondA.J.SuchardM.A.XieD.RambautA. (2012): Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29: 1969-1973.

ElithJ.PhillipsS.J.HastieT.DudíkM.CheeY.E.YatesC.J. (2011): A statistical explanation of MaxEnt for ecologists. Divers. Distributions 17: 43-57.

ElithJ.GrahamC.H.AndersonR.P.DudíkM.FerrierS.GuisanA.HijmansR.J.HuettmannF.LeathwickJ.R.LehmannA.LiJ.LohmannL.G.LoiselleB.A.ManionG.MoritzC.NakamuraM.NakazawaY.OvertonJ.M.C.PetersonA.T.PhillipsS.J.RichardsonK.S.Scachetti-PereiraR.SchapireR.E.SoberónJ.WilliamsS.WiszM.S.ZimmermannN.E. (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.

EllisE.C.RamankuttyN. (2008): Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6: 439-447.

EllisE.C.GoldewijkK.SiebertS.LightmanD.RamankuttyN. (2010): Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19: 589-606.

FahdS.BenítezM.BritoJ.C.CaroJ.ChirosaM.FericheM.Fernández-CardeneteJ.R.Martínez-FreiraF.Márquez-FerrandoR.NesbittD.PleguezuelosJ.M.RequesR.Paz RodríguezM.SantosX.SiciliaM. (2005): Distribución de Vipera latastei en el Rif y otras citas herpetológicas para el norte de Marruecos. Bol. Asoc. Herpetol. Esp. 16: 19-25.

FerreiraS.Martínez-FreiríaF.BoudotJ.-P.El HaissoufiM.BennasN.Célio Alves P.WattsP.C.ThompsonD.J.BritoJ.C. (2015): Local extinctions and range contraction of the endangered Coenagrion mercuriale in north Africa. Int. J. Odonatol. 18: 137-152.

GarciaR.A.BurgessN.D.CabezaM.RahbekC.AraújoM.B. (2012): Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Chang. Biol. 18: 1253-1269.

GonçalvesD.V.BritoJ.C.CrochetP.A.GeniezP.PadialJ.M.HarrisD.J. (2012): Phylogeny of north African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. Mol. Phylogenet. Evol. 64: 582-591.

GonçalvesD.V.Martínez-FreiríaF.CrochetP.A.GeniezP.CarranzaS.BritoJ.C. (2018): The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in north Africa. Mol. Phylogenet. Evol. 118: 64-74.

HernandezP.A.GrahamC.H.MasterL.L.AlbertD.L. (2006): The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.

HijmansR.J.CameronS.E.ParraJ.L.JonesP.G.JarvisA. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.

HusemannM.SchmittT.ZachosF.E.UlrichW.HabelJ.C. (2014): Palaearctic biogeography revisited: evidence for the existence of a north African refugium for western Palaearctic biota. J. Biogeogr. 41: 81-94.

KröpelinS.VerschurenD.LézineA.M.EggermontH.CocquytC.FrancusP.CazetJ.-P.FagotM.RumesB.RussellJ.M.DariusF.ConleyD.J.SchusterM.SuchodoletzH.von EngstromD.R. (2008): Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320: 765-768.

LanfearR.CalcottB.HoS.Y.GuindonS. (2012): PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695-1701.

Le SaoutS.HoffmannM.ShiY.HughesA.BernardC.BrooksT.M.BertzkyB.ButchartS.H.M.StuartS.N.BadmanT.RodriguesA.S.L. (2013): Protected areas and effective biodiversity conservation. Science 342: 803-805.

LibradoP.RozasJ. (2009): DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.

LiuC.WhiteM.NewellG. (2013): Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40: 778-789.

LuiselliL.PetrozziF.MebertK.ZuffiM.A.AmoriG. (2015): Resource partitioning and dwarfism patterns between sympatric snakes in a micro-insular Mediterranean environment. Ecol. Res. 30: 527-535.

MalcolmJ.R.LiuC.NeilsonR.P.HansenL.HannahL.E.E. (2006): Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20: 538-548.

Martínez-FreiríaF.Velo-AntónG.BritoJ.C. (2015): Trapped by climate: interglacial refuge and recent population expansion in the endemic Iberian adder Vipera seoanei. Divers. Distributions 21: 331-344.

Martínez-FreiríaF.SilleroN.LizanaM.BritoJ.C. (2008): GIS based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Divers. Distributions 14: 452-461.

Martínez-FreiríaF.ArgazH.FahdS.BritoJ.C. (2013): Climate change is predicted to negatively influence Moroccan endemic reptile richness. Implications for conservation in protected areas. Naturwissenschaften 100: 877-889.

Martínez-FreiríaF.BritoJ.C.PleguezuelosJ.M.SantosX. (2014): Vipera latastei Boscá, 1878. In: Fauna Ibérica p. 920-941. SalvadorA. Ed. Museo Nacional de Ciencias – CSICMadrid.

Martínez-FreiríaF.CrochetP.-A.FahdS.GeniezP.BritoJ.C.Velo-AntónG. (2017a): Integrative phylogeographic and ecological analyses reveal multiple Pleistocene refugia for Mediterranean Daboia vipers in north-west Africa. Biol. J. Linn. Soc. In press.

Martínez-FreiríaF.García-CardeneteL.AlaminosE.FahdS.FericheM.Flores StolsV.Jiménez-CazallaF.PérezA.PleguezuelosJ.M.SantosX.Velo-AntónG. (2017b): Contribution to the knowledge on the reptile fauna of Jebel Sirwa (Morocco), with some insights into the conservation status of Vipera latastei-monticola. Bol. Asoc. Herpetol. Esp. 28: 103-109.

MerowC.SmithM.J.SilanderJ.A. (2013): A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058-1069.

MirasJ.CheylanM.NouiraS.JoggerU.Sá-SousaP.Perez-MelladoV.Martínez-SolanoI. (2009): The IUCN Red List of Threatened Species 2009: Vipera latastei. e.T61592A12503848.

MoritzC. (1994): Defining “Evolutionary significant units” for conservation. Trends Ecol. Evol. 9: 373-375.

MyersN.MittermeierR.A.MittermeierC.G.da FonsecaG.A.KentJ. (2000): Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

PereraA.HarrisD.J. (2010): Genetic variability in the ocellated lizard Timon tangitanus in Morocco. Afr. Zool. 45: 321-329.

PhillipsS.J.DudíkM. (2008): Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.

PinhoC.HarrisD.J.FerrandN. (2007): Comparing patterns of nuclear and mitochondrial divergence in a cryptic species complex: the case of Iberian and North African Wall lizards (Podarcis, Lacertidae). Biol. J. Linn. Soc. 91: 121-133.

PinhoC.HarrisD.J.FerrandN. (2008): Non-equilibrium estimates of gene flow inferred from nuclear genealogies suggest that Iberian and North African Wall lizards (Podarcis spp.) are an assemblage of incipient species. BMC Evol. Biol. 8: 1-20.

PleguezuelosJ.M.BritoJ.C.FahdS.FericheM.MateoJ.A.Moreno-RuedaG.RequesR.SantosX. (2010): Setting conservation priorities for the Moroccan herpetofauna: the utility of regional red lists. Oryx. 44: 501-508.

RatoC.CarranzaS.HarrisD.J. (2012): Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data. BMC Evol. Biol. 12: 14.

RatoC.ZuffiM.A.CortiC.FornasieroS.GentilliA.RazzettiE.ScaliS.CarreteroM.A.HarrisD.J. (2009): Phylogeography of the European Whip Snake, Hierophis viridiflavus (Colubridae), using mtDNA and nuclear DNA sequences. Amphibia-Reptilia 30: 283-289.

RosauerD.F.CatulloR.A.VanDerWalJ.MoussalliA.MoritzC. (2015): Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest Herpetofauna. PLoS One 10: e0126274.

SantosX.RatoC.CarranzaS.CarreteroM.A.PleguezuelosJ.M. (2012): Complex phylogeography in the Southern Smooth Snake (Coronella girondica) supported by mtDNA sequences. J. Zool. Syst. Evol. Res. 50: 210-219.

SantosX.BritoJ.C.SilleroN.PleguezuelosJ.M.LlorenteG.A.FahdS.ParelladaX. (2006): Inferring habitat-suitability areas with ecological modelling techniques and GIS: a contribution to assess the conservation status of Vipera latastei. Biol. Conserv. 130: 416-425.

SotiropoulosK.EleftherakosK.DžukićG.KalezićM.L.LegakisA.PolymeniR.M. (2007): Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol. Phylogenet. Evol. 45: 211-226.

StephensM.SmithN.J.DonnellyP. (2001): A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68: 978-989.

StuckasH.Velo-AntónG.FahdS.KalboussiM.RouagR.ArculeoM.MarroneF.SaccoF.VambergerM.FritzU. (2014): Where are you from, stranger? The enigmatic biogeography of north African pond turtles (Emys orbicularis). Org. Divers. Evol. 14: 295-306.

UrsenbacherS.CarlssonM.HelferV.TegelströmH.FumagalliL. (2006): Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol. Ecol. 15: 3425-3437.

UrsenbacherS.SchweigerS.TomovićL.Crnobrnja-IsailovićJ.FumagalliL.MayerW. (2008): Molecular phylogeography of the nose-horned viper (Vipera ammodytes, Linnaeus (1758)): evidence for high genetic diversity and multiple refugia in the Balkan Peninsula. Mol. Phylogenet. Evol. 46: 1116-1128.

ValeC.G.da SilvaM.J.F.CamposJ.C.TorresJ.BritoJ.C. (2015): Applying species distribution modelling to the conservation of an ecologically plastic species (Papio papio) across biogeographic regions in west Africa. J. Nat. Conserv. 27: 26-36.

VanDerWalJ.ShooL.P.GrahamC.WilliamsS.E. (2009): Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220: 589-594.

Velo-AntónG.el MarnisiB.FritzU.FahdS. (2015): Distribution and conservation status of Emys orbicularis in Morocco. Vertebr. Zool. 65: 131-135.

Velo-AntónG.GodinhoR.HarrisD.J.SantosX.Martínez-FreiriaF.FahdS.LarbesS.PleguezuelosJ.M.BritoJ.C. (2012): Deep evolutionary lineages in a western Mediterranean snake (Vipera latastei/monticola group) and high genetic structuring in southern Iberian populations. Mol. Phylogenet. Evol. 65: 965-973.

VencesM.SanchezE.HauswaldtJ.S.EikelmannD.RodríguezA.CarranzaS.WernerP. (2014): Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol. Phylogenet. Evol. 73: 208-216.

VeríssimoJ.ZnariM.StuckasH.FritzU.PereiraP.TeixeiraJ.KehlmaierC.Velo-AntónG. (2016): Pleistocene diversification in Morocco and recent demographic expansion in the Mediterranean pond turtle Mauremys leprosa. Biol. J. Linn. Soc. 119: 943-959.

WarrenD.L.GlorR.E.TurelliM. (2008): Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868-2883.

Figures

  • View in gallery

    On top, map showing the distribution of available records for V. latastei-monticola in North Africa, classified according to the time period of collection. Records obtained during recent fieldwork campaigns (2011-2016) are also depicted. On bottom, photographs of three individuals captured during field work campaigns, including: 1) female from Tichka plateau, Western High Atlas; 2) female from Tizi n’Tichka, Central High Atlas; and 3) male from Jebel Taria, Rif Mountains. Numbers of photographs coincide with numbers in the distribution map.

  • View in gallery

    A) Distribution of V. latastei-monticola samples in North Africa coloured according to mitochondrial affinity. B) Bayesian phylogenetic tree based on the combined mtDNA dataset (Cytb and ND4), rooted with five Iberian samples (only one sample shown). Black dots on the nodes show posterior probabilities higher than 0.95 while grey dots show posterior probabilities between 0.9 and 0.95. Scale bar represents 0.4% of sequence divergence. C) TCS haplotype networks based on each mitochondrial (Cytb and ND4) and nuclear (PRLR, NT3 and B-fib) gene fragment. Iberian haplotypes are not represented in mtDNA haplotype networks; sequences from V. aspis and V. seoanei were included in the nuclear haplotype networks. Each circle represents a different haplotype identified with the corresponding number. The size of each circle is proportional to the number of sequences sharing the same haplotype. Disconnected haplotype networks are separated by a minimum of 21 mutational steps.

  • View in gallery

    On top, details and metrics of the 30 model replicates developed for V. latastei-monticola distribution in the Maghreb, including number of records used in the training and tests datasets, average (standard deviation) training and tests AUC and the two thresholds applied to reclassify probabilistic models into binary maps (Minimum training presence logistic threshold – MTP and Maximum training sensitivity plus specificity logistic threshold – MaxSS); on bottom, average (standard deviation) percentage contribution of each EGV to the model.

  • View in gallery

    A) Average probability of occurrence and standard deviation (small inset) for V. latastei-monticola distribution in North Africa and for each Maghrebian lineage recovered in the phylogenetic analyses. Rectangules over the probability map for the species occurrence delimit the spatial distribution of each mitochondrial lineage. Colours on each probability map correspond to the colours of mitochondrial lineages in fig. 2. Records used to build the species distribution model (SDM) are depicted with circles; black triangles show sequenced specimens representatives of each lineage. B) Response curves for the eco-geographical variables most related to the distribution of the species in the Maghreb (slope and annual precipitation).

  • View in gallery

    Percentage of suitable area for V. latastei-monticola (VLA-MO) and each mtDNA lineage (C-H Atlas, W-H Atlas, Rif-E Atlas and Algeria) included inside three Anthromes (Used, Seminatural and Natural). Four categories are depicted within the Used anthrome (Dense settlements, Villages, Croplands and Rangelands).

  • View in gallery

    Percentage of suitable area for V. latastei-monticola (VLA-MO) and the four mtDNA lineages (C-H Atlas, W-H Atlas, Rif-E Atlas and Algeria) located inside eight types of protected areas. Total percentage of suitable area included inside all protected areas is depicted below.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 33 33 14
Full Text Views 97 97 46
PDF Downloads 10 10 5
EPUB Downloads 0 0 0