Potential biodiversity map of lizard species in Southern Patagonia: environmental characterization, desertification influence and analyses of protection areas

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

The distribution of biodiversity at the landscape level is shaped by biotic, abiotic and anthropogenic factors. Biodiversity maps provide the basis for defining management and conservation strategies that can minimize human impacts. The objective was to elaborate a map of potential biodiversity of lizards based on habitat suitability maps of individual species in Santa Cruz (Argentina). Also, we analysed desertification influence and the representativeness of the current network of protected areas on the lizard biodiversity. For this, we used a database of eight lizard species and we explored 41 potential explanatory variables to develop habitat suitability maps, which were combined to obtain one single map of the potential biodiversity. We analysed the outputs in a GIS project using the marginality and the specialization indexes and the normalized difference vegetation index of each species. Also, we characterized the potential biodiversity using the following variables: desertification, ecological areas and current network of protected areas. We detected differences in the occupied niches for the different species throughout the landscape. The map of potential biodiversity uncovered hotspots of biodiversity in the north-east study area, where the prevalence of unique climatic conditions showed a dry steppe and a high degree of desertification due to the human impacts (e.g. livestock). These results can be readily used as a support system for conservation and management strategies at different scale levels in areas with higher human impacts or to develop new protection areas.

  • Supplementary data

Amphibia-Reptilia

Publication of the Societas Europaea Herpetologica

Sections

References

Allouche, O., Steinitz, O., Rotem, D., Rosenfeld, A., Kadmon, R. (2008): Incorporating distance constraints into species distribution models. J. Appl. Ecol. 45: 599-609.

Anderson, R.P. (2012): Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann. New York Acad. Sci. 1260: 66-80.

Angilletta, M.J. (2009): Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford Univ. Press, New York.

Attum, O., Eason, P., Cobbs, G., El Din, S.M.B. (2006): Response of a desert lizard community to habitat degradation: do ideas about habitat specialists/generalists hold?. Biol. Conserv. 133: 52-62.

Avila, L.J., Morando, M., Sites Jr, J.W. (2006): Congeneric phylogeography: hypothesizing species limits and evolutionary processes in Patagonian lizards of the Liolaemus boulengeri group (Squamata: Liolaemini). Biol. J. Linnean Soc. 89: 241-275.

Badiane, A., Matos, C., Santos, X. (2017): Uncovering environmental, land-use and fire effects on the distribution of a low-dispersal species, the Hermann’s tortoise Testudo hermanni. Amphib-reptil. 38: 67-77.

Böhm, M., Collen, B., Baillie, J.E., Bowles, P., Chanson, J., et al. (2013): The conservation status of the world’s reptiles. Biol. Consev. 157: 372-385.

Bonino, M.F., Azócar, D.L.M., Schulte, J.A., Cruz, F.B. (2015): Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg. Environ. Change 15: 1121-1132.

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F. (2002): Evaluating resource selection functions. Ecol. Model. 157: 281-300.

Breitman, M.F., Avila, L.J., Sites Jr, J.W., Morando, M. (2011): Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol. Phylogenet. Evol. 59: 364-376.

Breitman, M.F., Avila, L.J., Sites Jr, J.W., Morando, M. (2012): How lizards survived blizzards: phylogeography of the Liolaemus lineomaculatus group (Liolaemidae) reveals multiple breaks and refugia in southern Patagonia and their concordance with other codistributed taxa. Mol. Ecol. 21: 6068-6085.

Breitman, M.F., Minoli, I., Avila, L.J., Medina, C.D., Sites Jr, J.W., Morando, M. (2014): Lagartijas de la provincia de Santa Cruz, Argentina: distribución geográfica, diversidad genética y estado de conservación. Cuad. Herpetol. 28: 83-110.

Breitman, M.F., Bonino, M.F., Sites Jr, J.W., Avila, L.J., Morando, M. (2015): Morphological variation, niche divergence, and phylogeography of lizards of the Liolaemus lineomaculatus section (Liolaemini) from southern Patagonia. Herpetol. Monogr. 29: 65-88.

Chébez, J.C., Rey, N.R., Williams, J.D. (2005): Reptiles de los Parques Nacionales de la Argentina. L.O.L.A. Ed., Argentina.

Chehébar, C., Novaro, A., Iglesias, G., Walker, S., Funes, M., Tammone, M., Didier, K. (2013): Identificación de Áreas de Importancia Para la Biodiversidad en la Estepa y el Monte de Patagonia. ErreGé y Asociados imprenta Ed., Argentina.

Corbalán, V., Tognelli, M.F., Scolaro, J.A., Roig-Juñent, S.A. (2011): Lizards as conservation targets in Argentinean Patagonia. J. Nat. Conserv. 19: 60-67.

Cruz, F.B., Kozykariski, M.L., Perotti, M.G., Pueta, M., Moreno, L. (2005): Variación diaria de la temperatura corporal en dos especies de lagartos nocturnos (Squamata: Gekkonidae: Homonota) con comentarios sobre el uso de refugios. Cuad. Herpetol. 18: 15-22.

Del Valle, H.F., Elissalde, N.O., Gagliardini, D.A., Milovich, J. (1998): Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid. Land. Res. Manage. 12: 95-121.

ESRI (2011): ArcGIS Desktop: Release 10.. Environmental Systems Research Institute Inc., Redlands, USA.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007): The shuttle radar topography mission. Rev. Geophys. 45: RG2004.

Fernández, J.B., Smith Jr, J., Scolaro, A., Ibargüengoytía, N.R. (2011): Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J. Therm. Biol. 36: 15-22.

Ferrier, S. (2002): Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51: 331-363.

Gibbons, J.W., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.D., Metts, B.S., Greene, J.L., Mills, T., Leiden, Y., Poppy, S., Winne, C.T. (2000): The global decline of reptiles, déjà vu amphibians. BioScience 50: 653-666.

Godsoe, W., Franklin, J., Blanchet, F.G. (2017): Effects of biotic interactions on modeled species’ distribution can be masked by environmental gradients. Ecol. Evol. 7: 654-664.

Grinnell, J. (1917): Field tests of theories concerning distributional control. Am. Nat. 51: 115-128.

Guisan, A., Zimmermann, N.E. (2000): Predictive habitat distribution models in ecology. Ecol. Model. 135: 147-186.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climat. 25: 1965-1978.

Hirzel, A.H., Arlettaz, R. (2003): Modelling habitat suitability for complex species distributions by the environmental-distance geometric mean. Environ. Manage. 32: 614-623.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002): Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027-2036.

Hirzel, A.H., Hausser, J., Perrin, N. (2004): Biomapper 3.1. Division of Conservation Biology. University of Bern, Bern, Switzerland.

Hirzel, A.H., Helfer, V., Metral, F. (2001): Assessing habitat-suitability models with a virtual species. Ecol. Model. 145: 111-121.

Hirzel, A.H., Le Lay, G. (2008): Habitat suitability modelling and niche theory. J. Appl. Ecol. 45: 1372-1381.

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A. (2006): Evaluating habitat suitability models with presence-only data. Ecol. Model. 199: 142-152.

Howland, B., Stojanovic, D., Gordon, I.J., Manning, A.D., Fletcher, D., Lindenmayer, D.B. (2014): Eaten out of house and home: impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands. PloS one 9: e105966.

Ibargüengoytía, N.R., Medina, S.M., Fernández, J.B., Gutiérrez, J.A., Tappari, F., Scolaro, A. (2010): Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35: 21-27.

JennessJ. (2007): Some Thoughts on Analyzing Topographic Habitat Characteristics. Jenness Enterprises Ed., USA.

Kubisch, E.L., Corbalán, V., Ibargüengoytía, N.R., Sinervo, B. (2015): Local extinction risk of three species of lizard from Patagonia as a result of global warming. Can. J. Zool. 94: 49-59.

Larson, D.M. (2014): Grassland fire and cattle grazing regulate reptile and amphibian assembly among patches. Environ. Manage. 54: 1434-1444.

Mangiacotti, M., Scali, S., Sacchi, R., Bassu, L., Nulchis, V., Corti, C. (2013): Assessing the spatial scale effect of anthropogenic factors on species distribution. PloS one 8: e67573.

Martínez Pastur, G., Peri, P.L., Huertas Herrera, A., Schindler, S., Díaz-Delgado, R., Lencinas, M.V., Soler, R. (2017): Linking potential biodiversity and three ecosystem services in silvopastoral managed forest landscapes of Tierra del Fuego, Argentina. I. J. B. S. M. 13: 1-11.

Martínez Pastur, G., Peri, P.L., Soler, R., Schindler, S., Lencinas, M.V. (2016): Biodiversity potential of Nothofagus forests in Tierra del Fuego (Argentina): tool proposal for regional conservation planning. Biodiv. Conserv. 25: 1843-1862.

McGarigal, K., Cushman, S.A., Ene, E. (2012): FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, USA.

Medina, M., Ibargüengoytía, N.R. (2010): How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J. Arid. Environ. 74: 1024-1032.

Morando, M., Avila, L.J., Turner, C., Sites Jr., J.W. (2007): Molecular evidence for a species complex in Liolaemus bibroni and phylogeography of the closely related Liolaemus gracilis. Mol. Phylogenet. Evol. 43: 952-973.

Munguía, M., Townsend Peterson, A., Sánchez-Cordero, V. (2008): Dispersal limitation and geographical distributions of mammal species. J. Biogeogr. 35: 1879-1887.

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R., Lehner, B., Malcolm, T., Ricketts, T. (2008): Global mapping of ecosystem services and conservation priorities. P. N. A. S. 105: 9455-9500.

Newbold, T. (2010): Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geog. 34: 3-22.

Oliva, G., Gonzalez, L., Ruial, P. (2004): Áreas ecológicas. In: Guía Geográfica Interactiva de Santa Cruz, p. 14-15. I.N.T.A. Ed., Argentina.

Olson, D.M., Dinerstein, E. (2002): The global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89: 199-224.

ORNL DAAC (2008): MODIS Collection 5 Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA.

Peri, P.L., Lencinas, M.V., Bousson, J., Lasagno, R., Soler, R., Bahamonde, H., Martínez Pastur, G. (2016): Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: the case of PEBANPA network. J. Nat. Conserv. 34: 51-64.

Peri, P.L., Rosas, Y.M., Ladd, B., Toledo, S., Lasagno, R.G., Martínez Pastur, G. (2018): Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 10: e-438, 14 pp.

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S. (2009): Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19: 181-197.

Pyron, R.A., Burbrink, F.T., Wiens, J.J. (2013): A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13: 93.

Rosas, Y.M., Peri, P.L., Herrera, A.H., Pastore, H., Martínez Pastur, G. (2017): Modeling of potential habitat suitability of Hippocamelus bisulcus: effectiveness of a protected areas network in Southern Patagonia. Ecol. Process. 6: 28.

Sillero, N., Brito, J.C., Skidmore, A.K., Toxopeus, A.G. (2009): Biogeographical patterns derived from remote sensing variables: the amphibians and reptiles of the Iberian Peninsula. Amphib-reptil. 30: 185-206.

Soberón, J., Peterson, A.T. (2005): Interpretation of models of fundamental ecological niches and species’ distribution areas. Biodiv. Inf. 2: 1-10.

Veloz, S.D. (2009): Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36: 2290-2299.

Weeks, D.M., Espinoza, R.E. (2013): Lizards on ice: comparative thermal tolerances of the world’s southernmost gecko. J. Therm. Biol. 38: 225-232.

Zeng, Z.G., Bi, J.H., Li, S.R., Chen, S.Y., Pike, D.A., Gao, Y., Du, W.G. (2014): Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biol. Conserv. 179: 86-92.

Zhao, M., Running, S.W. (2010): Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329: 940-943.

Zomer, R.J., Trabucco, A., Bossio, D.A., Van Straaten, O., Verchot, L.V. (2008): Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126: 67-80.

Figures

  • Characterization of the study area: (A) location of Argentina (dark grey) and Santa Cruz province (black); (B) towns (big dot = capital city, middle dots = towns >3000, small dots = towns <3000 inhabitants), lakes and main rivers; (C) relief (grey = <400, dark grey = 400-1000, black = >1000 m.a.s.l.); (D) main ecological areas (light grey = dry steppe, grey = humid steppe, medium grey = shrub-lands, dark grey = sub-Andean grasslands, black = forests and alpine vegetation) (modified from Oliva, Gonzalez and Ruial, 2004), and (E) protection areas (grey = provincial reserves, black = national parks).

    View in gallery
  • Specialization (low species’ variance compared to global variance of the data base) vs. marginality (large difference of species’ mean compared to the mean of the data base) of the studied species, which were grouped according to predominant geographic distribution (North, General, South) inside the study area (see supplementary material). Species code means: LIBI = Liolaemus bibronii, LIFI = L. fitzingerii, LIKI = L. kingii, LILI = L. lioneomaculatus, LISA = L. sarmientoi, LIES = L. escarchadosi, DIBI = Diplolaemus bibronii, and HODA = Homonota darwinii darwinii.

    View in gallery
  • Variation of potential habitat suitability (PHS) of lizard species according to the normalized difference vegetation index (NDVI) and their predominant geographic location (North = black, General = grey, South = pale grey). Species code means: LIBI = Liolaemus bibronii, LIFI = L. fitzingerii, LIKI = L. kingii, LILI = L. lioneomaculatus, LISA = L. sarmientoi, LIES = L. escarchadosi, DIBI = Diplolaemus bibronii, and HODA = Homonota darwinii darwinii.

    View in gallery
  • Map of potential biodiversity (MPB) of lizard species in Santa Cruz province. Low potential = pale grey (1-21%), medium potential = grey (22-37%), high potential = black (38-100%).

    View in gallery
  • Characterization (mean and standard deviation) of the climatic and topographic variables analysing the map of potential biodiversity (MPB) of lizard species classified according to their values: total means the entire province, low (1-21%), medium (22-37%) and high (38-100%) potential quality classified according to the modelling.

    View in gallery
  • Percentage occupied by the qualities according to the map of potential biodiversity (MPB) of lizard species classified by the occurrence in different categories of ecological areas (see fig. 1D) and intensities of desertification (see Del Valle et al., 1998). Where low (1-21%), medium (22-37%) and high (38-100%) potential quality were classified according to the modelling.

    View in gallery
  • Percentage and area (km2) occupied by the qualities according to the map of potential biodiversity (MPB) of lizard species classified by the occurrence and their protection status: provincial reserves (PR), national parks (NP) (see fig. 1E). Where low (1-21%), medium (22-37%) and high (38-100%) potential quality were classified according to the modelling.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 9
Full Text Views 4 4 3
PDF Downloads 2 2 1
EPUB Downloads 0 0 0