Museum specimens indicate genetic erosion in an endangered lizard

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Genetic variability, one of the main factors that guarantees species persistence, and species’ conservation status are generally evaluated with indices calculated at the present time. Natural history collections might help compare historical and current genetic diversity so to identify major trends. Here we analysed museum specimens of the lizard Zootoca vivipara carniolica, with a specific and stringent protocol for degraded DNA, in order to contrast its past and current genetic variability, using fragments of one mitochondrial DNA gene. Part of the distributional range of Z. v. carniolica (Po Plain, Italy), heavily impacted by human activities, was investigated. We found two previously unknown haplotypes in populations that are extinct today, suggesting the loss of these haplotypes and thus an overall shrinking of genetic variability. We argue that these results, together with the increasing threats posed by climate and land use changes, suggest that specific conservation measures for the persistence of Z. v. carniolica in Northern Italian lowlands have to be considered.

  • Supplementary data

Museum specimens indicate genetic erosion in an endangered lizard

in Amphibia-Reptilia

Sections

References

AndreoneF.SindacoR. (1998): Erpetologia del Piemonte e della Valle d’Aosta. Atlante degli Anfibi e dei Rettili – Monografie XXVI.

BertorelleG.BenazzoA.MonaS. (2010): ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol. Ecol. 19: 2609-2625.

BragazzaL. (2008): A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob. Chang. Biol. 14: 2688-2695.

CameranoL. (1885): Monografia dei Sauri italiani. Mem. Della R. Accad. Delle Sci. Di Torino 37: 491-591.

ClementM.PosadaD.CrandallK.A. (2000): TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1659.

CornettiL.BelluardoF.GhielmiS.GiovineG.FicetolaG.F.BertorelleG.VernesiC.HauffeH.C. (2015a): Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard Zootoca vivipara in a contact zone. Biol. J. Linn. Soc. 114: 566-573.

CornettiL.FicetolaG.F.HobanS.VernesiC. (2015b): Genetic and ecological data reveal species boundaries between viviparous and oviparous lizard lineages. Heredity. 115: 517-526.

CornettiL.GriffithO.W.BenazzoA.PanzieraA.WhittingtonC.M.ThompsonM.B.VernesiC.BertorelleG. (2017): Candidate genes involved in the evolution of viviparity: a RAD sequencing experiment in the lizard Zootoca vivipara (Squamata: Lacertidae). In press. DOI:10.1093/zoolinnean/zlx069.

CornettiL.MenegonM.GiovineG.HeulinB.VernesiC. (2014): Mitochondrial and nuclear DNA survey of Zootoca vivipara across the eastern Italian Alps: evolutionary relationships, historical demography and conservation implications. PLoS One 9: e85912.

FrankhamR. (2005): Genetics and extinction. Biol. Conserv. 126: 131-140.

FrankhamR.BallouJ.BriscoeD. (2004): A Primer of Conservation Genetics. Cambridge University PressCambridge.

GhielmiS.GiovineG.MenegonM.LapiniL.Surget-GrobaY.HeulinB. (2006): Le attuali conoscenze sulla distribuzione di Zootoca vivipara carniolica, Mayer, Bohme, Tiedeman, Bischoff, 2000 in Italia (Reptilia: Lacertidae). In: Societas Herpetologica Italica: Atti Del V Congresso Nazionale: Calci (PI) 29 Sett.-3 Ott. 2004 p. 123-127. Firenze University Press.

LarkinM.A.BlackshieldsG.BrownN.P.ChennaR.McgettiganP.A.McWilliamH.ValentinF.WallaceI.M.WilmA.LopezR.ThompsonJ.D.GibsonT.J.HigginsD.G. (2007): Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

LindtkeD.MayerW.BöhmeW. (2010): Identification of a contact zone between oviparous and viviparous common lizards (Zootoca vivipara) in central Europe: reproductive strategies and natural hybridization. SALAMANDRA 46: 73-82.

LounsberryZ.T.AlmeidaJ.B.LanctotR.B.LiebezeitJ.R.SandercockB.K.StrumK.M.ZackS.WiselyS.M. (2014): Museum collections reveal that buff-breasted sandpipers (Calidris subruficollis) maintained mtDNA variability despite large population declines during the past 135 years. Conserv. Genet. 15: 1197-1208.

MayerW.BöhmeW.TedemannF.BischoffW. (2000): On oviparous populations of Zootoca vivipara (JACQUIN, 1787) in south-eastern central Europe and their phylogenetic relationship to neighbouring viviparous and south-west European oviparous populations. Herpetozoa 13: 59-69.

Múrias Dos SantosA.CabezasM.P.TavaresA.I.XavierR.BrancoM. (2015): TcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32: 627-628.

OdiernaG.HeulinB.GuillaumeC.VogrinN.ApreaG.CapriglioneT.Surget-GrobaY.KupriyanovaL. (2001): Evolutionary and biogeographical implications of the karyological variations in the oviparous and viviparous forms of the lizard Lacerta (Zootoca) vivipara. Ecography (Cop.). 3: 332-340.

OrlandoL.CooperA. (2014): Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Syst. 45: 573-598.

PolloR. (1999): Osservazioni sull’erpetofauna della palude Brusà-Vallette e delle aree limitrofe. Boll. Del Mus. Civ. Di Stor. Nat. Di Venezia 48: 151-154.

RamakrishnanU.HadlyE.A. (2009): Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol. Ecol. 18: 1310-1330.

Rodriguez-PrietoA.GiovineG.LaddagaL.GhielmiS.CornettiL. (2017): Very similar, but not identical: morphological taxonomic identification to improve the resolution of fine-scale distribution of Zootoca (vivipara) carniolica. Amphibia-Reptilia. 38: 533-539.

RøedK.H.BjørnstadG.FlagstadØ.HaanesH.HufthammerA.K.JordhøyP.RosvoldJ. (2014): Ancient DNA reveals prehistoric habitat fragmentation and recent domestic introgression into native wild reindeer. Conserv. Genet. 15: 1-13.

RuaneS.AustinC.C. (2017): Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Mol. Ecol. Resour. 17: 1003-1008.

SalmasoR.OsellaG. (1989): Studi sulla Palude del Busatello (Veneto-Lombardia). Mem. Del Mus. Civ. Di Stor. Nat. Di Verona Sez. Biol. 7: 237-252.

SambrookJ.RussellD.W. (2006): Purification of Nucleic Acids by Extraction with Phenol:Chloroform. Cold Spring Harb. Protoc.

SemenzatoM.RichardJ.AmatoS. (1996): Boschi e risorgive planiziari: ambienti importanti per il mantenimento della continuità distributiva del popolamento erpetologico tra l’area montana e quella di pianura del Veneto. Stud. Trentini Di Sci. Nat. – Acta Biol. 71: 33-40.

SpielmanD.BrookB.W.FrankhamR. (2004): Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U.S.A. 101: 15261-15264.

StuartB.L.DuganK.A.AllardM.W.KearneyM. (2006): Extraction of nuclear DNA from bone of skeletonized and fluid-preserved museum specimens. Syst. Biodivers. 4: 133-136.

StuartB.L.FritzU. (2008): Historical DNA from museum type specimens clarifies diversity of Asian leaf turtles (Cyclemys). Biol. J. Linn. Soc. 94: 131-141.

Surget-GrobaY.HeulinB.GhielmiS.GuillaumeC.P.VogrinN. (2002): Phylogeography and conservation of the populations of Zootoca vivipara carniolica. Biol. Conserv. 106: 365-372.

Surget-GrobaY.HeulinB.GuillaumeC.P.PukyM.SemenovD.OrlovaV.KupriyanovaL.GhiraI.SmajdaB. (2006): Multiple origins of viviparity, or reversal from viviparity to oviparity? The European common lizard (Zootoca vivipara, Lacertidae) and the evolution of parity. Biol. J. Linn. Soc. 87: 1-11.

Surget-GrobaY.HeulinB.GuillaumeC.P.ThorpeR.S.KupriyanovaL.VogrinN.MaslakR.MazzottiS.VenczelM.GhiraI.OdiernaG.LeontyevaO.MonneyJ.C.SmithN. (2001): Intraspecific phylogeography of Lacerta vivipara and the evolution of viviparity. Mol. Phylogenet. Evol. 18: 449-459.

TisonJ.-L.BlennowV.EleftheriaP.GustafssonP.RoosA.DalénL. (2015): Population structure and recent temporal changes in genetic variation in Eurasian otters from Sweden. Conserv. Genet. 16: 371-384.

WandelerP.HoeckP.E.A.KellerL.F. (2007): Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22: 634-642.

ZimmermannJ.HajibabaeiM.BlackburnD.C.HankenJ.CantinE.PosfaiJ.EvansT.C. (2008): DNA damage in preserved specimens and tissue samples: a molecular assessment. Front. Zool. 5: 18.

Figures

  • View in gallery

    List of locations and specimens analysed. Area, refers to fig. 1a-b; N, number of extracted samples per location; Amplified, number of samples successfully amplified for at least one cytb fragment (* indicates sequenced individuals ascribable to Z. v. vivipara lineage according to cytb haplotype); Haplotypes, observed haplotypes in the historical specimens successfully amplified for the 311-bp cytb fragment (in brackets, the number of samples carrying the haplotype); Preservation, method of preservation.

  • View in gallery

    a) Cytb haplotype network including all the Z. v. carniolica haplotypes publicly available (OS, OL, OT) and the sequences obtained in this study (HS, historical sample). Haplotype labels beside big circles indicate sequences identical (due to the fact that a shorter fragment, in comparison with the original haplotype definition, was analysed in this study) to the haplotype showed inside the circle. The haplotypes depicted in the figure are not completely confined to single geographic populations. Small empty circles represent mutational steps between haplotypes; numbers beside branches indicate the position of the substitution and the type of nucleotide change; dashed lines represent connections to haplotypes coming from locations where Z. v. carniolica is considered extinct. b) Map of Northern Italy with a simplified representation of cytb haplotype network. The haplotypes depicted in the figure are not completely confined to single geographic populations. Thickness of network connections is proportional to the maximum number of mutations between two nodes. Grey areas represent the approximate current (dark gray) and historical (light grey) distribution of Z. v. carniolica according to the literature.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 10
Full Text Views 26 26 25
PDF Downloads 4 4 3
EPUB Downloads 0 0 0