Identifying suitable habitats and current conservation status of a rare and elusive reptile in Iran

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Knowledge gaps regarding species distribution and abundance are great in remote regions with political instability, and they might be even larger concerning elusive and rare species. We predict the potential distribution for Hierophis andreanus, a poorly known endemic snake in the Iranian Plateau, and assess its conservation status in relation to existing protected areas. We used a maximum entropy modeling tool and Mahalanobis distance to produce an ensemble species distribution model. The most suitable habitats where located mainly in mountain ranges and adjacent areas of Iran and Afghanistan. Mean temperature and slope were the most important predictors for our models. Furthermore, just five localities for H. andreanus were inside the Iranian protected areas. A 10 km expansion from existing boundaries of protected areas in all directions would double protected localities to 10, and a 20 km buffer would result in 13 protected localities. Our findings are particularly valuable to select locations to conduct new surveys and produce a more reliable estimate of current population size to improve conservation and management for this reptile in the Irano-Anatolian region.

Identifying suitable habitats and current conservation status of a rare and elusive reptile in Iran

in Amphibia-Reptilia



AlloucheO.TsoarA.KadmonR. (2006): Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223-1232.

AlmpanidouV.MazarisA.D.MertzanisY.AvraamI.AntoniouI.PantisJ.D.SgardelisS.P. (2014): Providing insights on habitat connectivity for male brown bears: a combination of habitat suitability and landscape graph-based models. Ecol. Modell. 286: 37-44.

AlmpanidouV.SchofieldG.KallimanisA.S.TürkozanO.HaysG.C.MazarisA.D. (2016): Using climatic suitability thresholds to identify past, present and future population viability. Ecol. Ind. 71: 551-556.

AndersonS.C.PapenfussT.SharifiM. (2009): Coluber andreanus. The IUCN Red List of Threatened Species. T164675A5917281.

AraújoM.B.AlagadorD.CabezaM.Nogués-BravoD.ThuillerW. (2011): Climate change threatens European conservation areas. Ecol. Lett. 14: 484-492.

ArsenaultN.RoseC.AzulayA.PhillipsJ. (2005): People and Place Curriculum Resources on Human-Environmental Interactions. The international outreach consortium at the University of Texas at Austin. 99.

AuerM.KhudurF.A.AraratA.HusseinR.H.Auer S.ZönnchenF. (2016): Erstnachweis von Hierophis andreanus aus dem Irak. Sauria 38: 49-51.

BealeC.LennonJ. (2012): Incorporating uncertainty in predictive species distribution modelling. Phil. Trans. R. Soc. B. Biol. Sci. 367: 247-258.

BuckleyL.B.JetzW. (2010): Lizard community structure along environmental gradients. J. Anim. Ecol. 79: 358-365.

CalengeC. (2006): The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197: 516-519.

ChefaouiR.M.SerrãoE.A. (2017): Accounting for uncertainty in predictions of a marine species: integrating population genetics to verify past distributions. Ecol. Modell. 39: 229-239.

ChefaouiR.M.Casado-AmezúaP.TempladoJ. (2017): Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa. Coral. Reefs. 36: 1195-1209.

CroitoruL.SarrafM. Eds (2010): The Cost of Environmental Degradation: Case Studies From the Middle Eastand North Africa. The World BankWashington DC.

DoE (2016): Department of the Environment of Iran. Accessed 4 January 2016.

ElithJ.GrahamC.H.AndersonR.P.DudíkM.FerrierS.GuisanA.HijmansR.J.HuettmannF.LeathwickJ.R.LehmannA.LiJ.LohmannL.G.LoiselleB.A.ManionG.MoritzC.NakamuraM.NakazawaY.Mc OvertonJ.C.M.Townsend PetersonA.PhillipsS.J.RichardsonK.Scachetti-PereiraR.SchapireR.E.SoberónJ.WilliamsS.WiszM.S.ZimmermannN.E. (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.

FathiniaB.Rastegar-PouyaniE.Rastegar-PouyaniN.DarvishniaH. (2017): A new species of the genus Rhynchocalamus Günther, 1864 (Reptilia: Squamata: Colubridae) from Ilam province in western Iran. Zootaxa 4282: 473-486.

FicetolaG.F.BonardiA.SindacoR.Padoa-SchioppaE. (2013): Estimating patterns of reptile biodiversity in remote regions. J. Biogeogr. 40: 1202-1211.

FieldingA.H.BellJ.F. (1997): A review of methods for the assessment of prediction errors in conservation presence/absence models. Env. Cons. 24: 38-49.

GholamifardA. (2011): Endemism in the reptile fauna of Iran. Ira. J. Anim. Biosys. 7: 13-29.

GilG.E.LoboJ.M. (2012): El uso de modelos predictivos de distribución para el diseño de muestreos de especies poco conocidas. Mastozool. Neotrop. 19: 47-62.

GuisanA.HoferU. (2003): Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30: 1233-1243.

HansonT.BrooksT.M.Da FonsecaG.A.HoffmannM.LamoreuxJ.F.MachlisG.MittermeierC.G.MittermeierR.A.PilgrimJ.D. (2009): Warfare in biodiversity hotspots. Conserv. Biol. 23: 578-587.

HijmansR.J.CameronS.E.ParraJ.L.JonesP.G.JarvisA. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.

HijmansR.J. (2016): raster: Geographic Data Analysis and Modeling. R package version 2.5-8.

HirzelA.H.HausserJ.ChesselD.PerrinN. (2002): Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027-2036.

HosseinzadehM.S.AliabadianM.Rastegar-PouyaniE.Rastegar-PouyaniN. (2014): The roles of environmental factors on reptile richness in Iran. Amphibia-Reptilia 35: 215-225.

Jiménez-ValverdeA.LoboJ.M.HortalJ. (2008): Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14: 885-890.

KolahiM.SakaiT.MoriyaK.MakhdoumM.F. (2012): Challenges to the future development of Iran’s protected areas system. Environ. Manag. 50: 750-765.

LawrenceM.J.StembergerH.L.ZolderdoA.J.StruthersD.P.CookeS.J. (2015): The effects of modern war and military activities on biodiversity and the environment. Environ. Rev. 23: 443-460.

LomolinoM.V. (2004): Conservation biogeography. In: Frontiers of Biogeography: New Directions in the Geography of Nature p. 293-296. LomolinoM.V.HeaneyL.R. Eds SinauerSunderland.

MakhdoumM.F. (2008): Management of protected areas and conservation of biodiversity in Iran. Int. J. Environ. Stud. 65: 563-585.

MazarisA.D.PapanikolaouA.D.Barbet-MassinM.KallimanisA.S.JiguetF.SchmellerD.S.PantisJ.D. (2013): Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the European Natura 2000 Network for Four Birds of Prey. PLoS One 8: e59640.

MittermeierR.A.Robles-GilP.HoffmannM.PilgrimJ.BrooksT.MittermeierC.G.LamoreuxJ.Da FonsecaG.A.B. (2004): Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions. CEMEXMexico City.

PearsonR.G.RaxworthyC.J.NakamuraM.PetersonA.T. (2007): Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102-117.

PhillipsS.J.AndersonR.P.SchapireR.E. (2006): Maximum entropy modelling of species geographic distributions. Ecol. Model. 190: 231-259.

PinedaE.LoboJ.M. (2009): Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J. Anim. Ecol. 78: 182-190.

RajabizadehM.Rastegar-PouyaniN. (2006): Additional information on the distribution and morphology of Coluber (s. l.) andreanus (Werner, 1917) (Reptilia: Colubridae) from Iran. Zool. Middle East 39: 69-74.

RajabizadehM.NagyZ.T.AdriaensD.AvciA.MasroorR.SchmidtlerJ.NazarovR.EsmaeiliH.R.ChristiaensJ. (2015): Alpine-Himalayan orogeny drove correlated morphological, molecular, and ecological diversification in the Persian dwarf snake (Squamata: Serpentes: Eirenis persicus). Zool. J. Lin. Soc. 176: 878-913.

RodriguesA.S.L.AkçakayaH.R.AndelmanS.J.BakarrM.I.BoitaniL.BrooksT.M.ChansonJ.S.FishpoolL.D.C.Da FonsecaG.A.B.GastonK.J.HoffmannM.MarquetP.A.PilgrimJ.D.PresseyR.L.SchipperJ.SechrestW.StuartS.N.UnderhillL.G.WallerR.W.WattsM.E.J.YanX. (2004): Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54: 1092-1100.

Safaei-MahrooB.GhaffariH.FahimiH.BroomandS.YazdanianM.Najafi-MajdE.Hosseinian YousefkaniS.S.RezazadehE.HosseinzadehM.S.NasrabadiR.RajabizadehM.MashayekhiM.MoteshareiA.NaderiA.KazemiS.M. (2015): The herpetofauna of Iran: checklist of taxonomy, distribution and conservation status. Asian Herpetol. Res. 6: 257-290.

SchättiB. (2001): Morphologie und Verbreitung von Coluber (sensu lato) andreanus (Werner, 1917) (Reptilia: Serpentes: Colubridae). Rev. suisse zool. 108: 487-493.

SchättiB.MonschP. (2004): Systematics and phylogenetic relationships of Whip snakes (Hierophis Fitzinger) and Zamenis andreana Werner 1917 (Reptilia: Squamata: Colubrinae). Rev. suisse zool. 111: 239-256.

SindacoR.JeremčenkoV.K. (2008): The Reptiles of the Western Palearctic. 1. Annotated Checklist and Distributional Atlas of the Turtles Crocodiles Amphisbaenians and Lizards of Europe North Africa Middle-East and Central Asia. Edizioni BelvedereLatina, Italy.

SindacoR.VenchiA.GriecoC. (2013): The Reptiles of the Western Palearctic. Monografie Della Societas Herpetologica Italica. II. Edizioni BelvedereLatina, Italy.

TorkiF. (2010): Die Andreas-Zornnatter Hierophis andreanus (Werner, 1917) im Westen des Iran. Sauria 32: 27-32.

TorkiF. (2017a): Description of a new species of Lytorhynchus (Squamata: Colubridae) from Iran. Zool. Middle East 63: 109-116.

TorkiF. (2017b): A new species of blind snake, Xerotyphlops, from Iran. Herpetol. Bull. 140: 1-5.

WernerF. (1917): Reptilien aus Persien (Provinz Fars). Verhandlungen der k.k. zoologisch botanischen Gesellschaft Wien 67: 191-220.

World Bank (1995): Islamic Republic of Iran: environment strategy study. Committed by Natural Resources & Environment Division Maghreb and Iran Department Middle East and North Africa Region Report No. 12806-IRN. World Bank Washington DC.


  • View in gallery

    Contribution of the variables to the Environmental Niche Factor Analysis (ENFA) and MaxEnt model of Hierophis andreanus. Those variables with the highest contribution to the ENFA marginality factor (in bold) were used to perform MaxEnt and Mahalanobis distance models. The eigenvalues of the specialization axes indicate that the first one explains most of the specialization, and only the contributions of variables to this first specialization axis are included in the table. Variables contributing most to specialization were temperature annual range and precipitation of the driest quarter, suggesting that the distribution of H. andreanus detections is much narrower for annual temperature range and precipitation of the driest quarter than for the study area as a whole.

  • View in gallery

    (A) Ensemble prediction for Hierophis andreanus calculated as the mean between MaxEnt and Mahalanobis distance models calibrated across the Middle East. Probability of occurrence ranges from 0 to 1 (highest probability). (B) Localities of Hierophis andreanus (red circles) in relation to the different protected areas of Iran. The Iranian region examined corresponds to the boundary box displayed in fig. 1A. Ecoregions are shown for informative purposes.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 34 34 16
Full Text Views 68 68 47
PDF Downloads 11 11 7
EPUB Downloads 0 0 0