Acoustic niche partitioning in five Cuban frogs of the genus Eleutherodactylus

in Amphibia-Reptilia
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Acoustic segregation is a way to reduce competition and allows for species coexistence within anuran communities. Thus, separation in at least one acoustic niche dimension is expected, which also contributes to achieving effective communication among frogs. Here we studied an assemblage of five terrestrial egg-laying anuran species, all in the genus Eleutherodactylus, in a montane rainforest in eastern Cuba. Our aim was to determine if partitioning exists between these species in any dimension (time, signal frequency or space) of the acoustic niche. The studied assemblage had the following characteristics: (1) there was one diurnal species, two species with calling activity throughout the day and two species that call at night; (2) only two species overlapped in call frequencies and most had different calls, both in terms of dominant frequencies and in temporal characteristics; and (3) males of the species that overlapped in vocalizing time or signal frequency used different calling microhabitats or heights. This study provides evidence for the acoustic niche hypothesis in anurans, showing low probabilities of interference in sound communication among these frogs. The five species were separated in at least one of the three acoustic dimensions (calling time, frequency and site) as it occurs in mainland communities with more sympatric species of several genera. Conversely, species in single-genus communities studied in Puerto Rico overlapped completely in calling times. This seems to be due to the higher number of sympatric species at our site.

Acoustic niche partitioning in five Cuban frogs of the genus Eleutherodactylus

in Amphibia-Reptilia

Sections

References

  • AbadM.BeyrisA. (2006): Physiography, hydrology, climate, and soils. In: Cuba: Pico Mogote. Rapid Biological Inventories Report 09 p. 96-97. MaceiraD.FongA.AlversonW.S. Eds The Field MuseumChicago.

  • AlonsoR.RodríguezA.EstradaA.R. (2001): Patrones de actividad acústica y trófica de machos cantores de Eleutherodactylus eileenae (Anura: Leptodactylidae). Rev. Esp. Herp. 15: 45-52.

  • Boquimpani-FreitasL.Ventura MarraR.Van SluysM.RochaC.F.D. (2007): Temporal niche of acoustic activity in anurans: interspecific and seasonal variation in a Neotropical assemblage from south-eastern Brazil. Amphibia-Reptilia 28: 269-276.

  • BridgesA.S.DorcasM.E. (2000): Temporal variation in anuran calling behavior: implications for surveys and monitoring programs. Copeia 2000: 587-592.

  • ChekA.A.BogartJ.P.LougheedS.C. (2003): Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecol. Letters 6: 235-247.

  • DíazL.M.CádizA. (2007): Guía descriptiva para la identificación de las llamadas de anuncio de las ranas cubanas del género Eleutherodactylus (Anura: Leptodactylidae). Herpetotropicos 3: 100-122.

  • DíazL.M.CádizA. (2008): Guía taxonómica de los anfibios de Cuba. Abc Taxa 4: 1-294.

  • DrewryG.E.RandA.S. (1983): Characteristics of an acoustic community: Puerto Rican frogs of the genus Eleutherodactylus. Copeia 1983: 941-953.

  • DuellmanW.TruebL. (1994): Biology of Amphibians. John Hopkins University PressMaryland.

  • FogartyJ.H.VilellaF.J. (2001): Evaluating methodologies to survey Eleutherodactylus frogs in montane forests of Puerto Rico. Wildl. Soc. Bull. 29: 948-955.

  • Garcia-RutledgeE.J.NarinsP.M. (2001): Shared acoustic resources in an Old World frog community. Herpetologica 57: 104-116.

  • GeangeS.W.PledgerS.BurnsK.C.ShimaJ.S. (2011): A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2: 175-184.

  • GerhardtH.C. (1988): Acoustic properties used in call recognition by frogs and toads. In: The Evolution of the Amphibian Auditory System p. 455-483. FritzschB.RyanM.J.WilczynskiW.HetheringtonT.E.WalkowiakW. Eds John Wiley & SonsNew York.

  • GerhardtH.C.HuberF. (2002): Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. University of Chicago PressChicago.

  • GillespieG.R.LockieD.ScroggieM.P.IskandarD.T. (2004): Habitat use by stream-breeding frogs in south-east Sulawesi, with some preliminary observations on community organization. J. Trop. Ecol. 20: 439-448.

  • GoutteS.DuboisA.HowardS.D.MarquezR.RowleyJ.J.L.DehlingJ.M.GrandcolasP.XiongR.C.LegendreF. (2016): Environmental constraints and call evolution in torrent-dwelling frogs. Evolution 70: 811-826.

  • GoutteS.DuboisA.HowardS.D.MarquezR.RowleyJ.J.L.DehlingJ.M.GrandcolasP.XiongR.C.LegendreF. (2018): How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs. J. Evol. Biol. 31: 148-158.

  • HedgesS.B.DuellmanW.E.HeinickeM.P. (2008): New World direct developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737: 1-182.

  • HödlW. (1977): Call differences and calling site segregation in anuran species from central Amazonian floating meadows. Oecologia 28: 351-363.

  • KimeN.M.TurnerW.R.RyanM.J. (2000): The transmission of advertisement calls in Central American frogs. Behav. Ecol. 11: 71-83.

  • LinkieM.RidoutM.S. (2011): Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. Lond. 284: 224-229.

  • LittlejohnM.J. (1977): Long-range acoustic communication in anurans: an integrated and evolutionary approach. In: The Reproductive Biology of Amphibians p. 263-294. TaylorD.H.GuttmanS.I. Eds PlenumNew York.

  • LittlejohnM.J.MartinA.A. (1969): Acoustic interaction between two species of leptodactylid frogs. Anim. Behav. 17: 785-791.

  • LöttersS.SchickS.ScheelkeK.TeegeP.KosuchJ.RotichD.VeithM. (2004): Bio-sketches and partitioning of sympatric reed frogs, genus Hyperolius (Amphibia; Hyperoliidae), in two humid tropical African forest regions. J. Nat. Hist. 38: 1969-1997. DOI:10.1080/00222930310001613584.

  • LüddeckeH.AmézquitaA.BernalX.GuzmánF. (2000): Partitioning of vocal activity in a Neotropical highland-frog community. Stud. Neotrop. Fauna & Environm. 35: 185-194.

  • MayerG.C. (2012): Puerto Rico and the Virgin Islands. In: Island Lists of West Indian Amphibians and Reptiles p. 136-147. PowellR.HendersonR.W. Eds Bulletin of the Florida Museum of Natural History 51(2).

  • MeredithM.RidoutM. (2014): Overlap. R Project for Statistical Computing. http://cran.r-project.org/web/packages/overlap/index.html.

  • MohrJ.R.DorcasM.E. (1999): A comparison of anuran calling patterns at two Carolina bays in South Carolina. J. Elisha Mitchell Soc. 115: 63-70.

  • MontenegroU. (1991): Mapa de temperatura máxima media anual, escala 1:500 000. In: Atlas de Santiago de Cuba. Viña BayésN. Ed. Academia de CienciasSantiago de Cuba.

  • NavasC.A. (1996): The effect of temperature on the vocal activity of tropical anurans: a comparison of high and low-elevation species. J. Herpetol. 30: 488-497.

  • OdendaalF.J.BullC.M.TelfordS.R. (1986): Influence of the acoustic environment on the distribution of the frog Ranidella riparia. Anim. Behav. 34: 1836-1843.

  • OspinaO.E.Villanueva-RiveraL.J.Corrada-BravoC.J.AideT.M. (2013): Variable response of anuran calling activity to daily precipitation and temperature: implications for climate change. Ecosphere 4: 1-12.

  • PassmoreN.I.TelfordS.R. (1981): The effect of chorus organization on mate localization in the painted reed frog (Hyperolius marmoratus). Behav. Ecol. Sociobiol. 9: 291-293.

  • ReyesO.J. (2000): Fitocenología. In: Diversidad Biológica del Macizo Montañoso Sierra Maestra. Informe Parcial p. 256-332. BIOECO Ed. Centro Oriental de Ecosistemas y BiodiversidadSantiago de Cuba.

  • ReyesO.J.AcostaF. (2006): Vegetation. In: Cuba: Pico Mogote. Rapid Biological Inventories Report 09 p. 97-103. MaceiraD.FongA.AlversonW.S. Eds The Field MuseumChicago.

  • RidoutM.LinkieM.S. (2009): Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14: 322-337.

  • Ríos-LópezN.Villanueva-RiveraL.J. (2013): Acoustic characteristics of a native anuran (Amphibia) assemblage in a palustrine herbaceous wetland from Puerto Rico. Life: The Excitement of Biology 1: 118-135.

  • Rivalta GonzálezV.Rodríguez SchettinoL.MancinaC.A.IturriagaM. (2014): Amphibians of Cuba: checklist and geographic distributions. Smithsonian Herp. Infor. Service 145: 1-48.

  • Santos ProtázioA.Lacerda AlbuquerqueR.Martini FalkenbergL.Oliveira MesquitaL. (2015): Acoustic ecology of an anuran assemblage in the arid Caatinga of northeastern Brazil. J. Nat. Hist. 49: 957-976.

  • SantosT.Rossa-FeresD. (2007): Similarities in calling site and advertisement call among anuran amphibians in southeastern Brazil. South Am. J. Herpetol. 2: 17-30.

  • ShiroseL.J.BishopC.A.GreenD.M.MacDonaldC.J.BrooksR.J.HelfertyN.J. (1997): Validation tests of an amphibian call count survey technique in Ontario, Canada. Herpetologica 53: 312-320.

  • SinschU.LümkemannK.RosarK.SchwarzC.DehlingJ.M. (2012): Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zool. 47: 60-73.

  • SullivanB.K.RyanM.J.VerrellP.A. (1995): Female choice and mating system structure. In: Amphibian Biology Volume 2: Social Behaviour p. 469-517. HeatwoleH.SullivanB.K. Eds Surrey Beatty & SonsChipping Norton, Australia.

  • ToddM.J.CocklinR.R.DorcasM.E. (2003): Temporal and spatial variation in anuran calling activity in the Western Piedmont of North Carolina. J. N. Car. Acad. Sci. 199: 103-110.

  • ToftC.A. (1985): Resource partitioning in amphibians and reptiles. Copeia 1985: 1-21.

  • Van der ElzenP.KreulenD.A. (1979): Notes on the vocalizations of some amphibians from the Serengeti National Park, Tanzania. Bonn. Zool. Beit. 30: 385-403.

  • Villanueva-RiveraL.J. (2014): Eleutherodactylus frogs show frequency but no temporal partitioning: implications for the acoustic niche hypothesis. PeerJ 2: e496. DOI:10.7717/peerj.496.

  • WeitzmanM.S. (1970): Measures of the overlap of income distribution of White and Negro families in the United States. Technical Report No. 22 Washington D.C. US Department of Commerce Bureau of the Census.

  • WellsK.D. (1977): The social behaviour of anuran amphibians. Anim. Behav. 25: 666-693.

  • WellsK.D. (2007): The Ecology and Behavior of Amphibians. The University of Chicago PressChicago.

  • WileyR.H.RichardsD.G. (1978): Physical constrains on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav. Ecol. Sociobiol. 3: 69-94.

  • ZelickR.D.NarinsP.M. (1983): Intensity discrimination and the precision of call timing in two species of Neotropical frogs. J. Comp. Physiol. A 153: 403-412.

Figures

  • View in gallery

    Mean (± Standard deviation) values of vocal activity overlap between pairs of Eleutherodactylus species at La Gran Piedra, Cuba.

  • View in gallery

    Temporal characteristics of the acoustic signals in five species of Eleutherodactylus species at La Gran Piedra, Cuba.

  • View in gallery

    Calling height (cm) and types of sites used for calling by five species of Eleutherodactylus at La Gran Piedra, Cuba. In the “Height” column, mean ± SD and range in parentheses is shown. Values in “Calling site” columns are percentages of all observations. Codes for sites: BG = Bare Ground, BL = Bush leaves, CA = Canopy (leaves, branches and trunks of trees), LI = Inside litter, LO = On litter, OR = On rock, OT = Other (specified below with superscripts).

  • View in gallery

    Calling activity patterns of five Eleutherodactylus species at La Gran Piedra, Cuba, from February to May 2003 (Cuban local time, UTC 5, is used in the X axis). Left graphics show the mean number of calling males for each survey period (rhombus: February; squares: March; triangles: April; circles: May). Right graphics show diel calling activity patterns estimated with the Overlap package (bold lines: average kernel-density estimates; thin and dashed lines: ± standard error). Grey bars indicate the range of sunrise and sunset times throughout the study months.

  • View in gallery

    Diel pattern of temporal niche overlap among five Eleutherodactylus species at La Gran Piedra, Cuba, from February to May 2003 (Cuban local time, UTC 5, is used in the X axis). Top: average overlap coefficient among the five species each month, bottom: average overlap coefficient in the four surveyed months (bold lines: average kernel-density estimates; thin and dashed lines: ± standard error).

  • View in gallery

    Dominant call frequencies plotted versus male body sizes (mean SVL of each species) of five Eleutherodactylus species at La Gran Piedra, Cuba. Mean (dot), minimum and maximum (error bars) dominant frequencies are showed for each species.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 129 129 47
Full Text Views 120 120 36
PDF Downloads 17 17 11
EPUB Downloads 0 0 0