Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Species distribution models (SDMs) are increasingly used to assess how ecological factors shape species distributions and diversification. Chelid turtles represent the richest family of chelonians in South America. Given the distributional disjunction and distinct habitats of four Acanthochelys species, we explored SDMs and niche overlap metrics between species pairs to evaluate the extent to which niche divergence or conservatism may have contributed to their geographic distribution patterns. None of the species pairs presented patterns consistent with niche conservatism suggesting that these species have different environmental requirements. However, when comparing species pairs co-occurring in the same watershed, results were conflicting. Niche divergence detected among Acanthochelys species indicate an interaction between ecological niche preference and geographical barriers for allopatric speciation. This interaction implies that ecological differentiation contributed to the diversification of Acanthochelys side-necked turtles that occur in South American freshwater environments.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., Anderson, R.P. (2015): spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541-545. DOI:10.1111/ecog.01132.
Araújo, M.B., New, M. (2007): Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42-47.
Assine, M.L. (2015): Brazilian Pantanal: a large pristine tropical wetland. In: Landscapes and Landforms of Brazil, p. 135-146. Vieira, B., Salgado, A., Santos, L., Eds, Springer, Dordrecht.
Bager, A., Lucas, P.S., Costa, A., Lima, J.C.S., Silveira, M.L. (2016): Morphology and sexual dimorphism of Acanthochelys spixii (Testudines, Chelidae) in Brazil. Trop. Zool. 29: 73-86.
Barbet-Massin, M., Rome, Q., Villemant, C., Courchamp, F. (2018): Can species distribution models really predict the expansion of invasive species?. PLoS One 13 (3): e0193085. DOI:10.1371/journal.pone.0193085.
Bivand, R., Rundel, C. (2017): rgeos: interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.3-25. https://CRAN.R-project.org/package=rgeos.
Breiman, L. (2001): Random forests. Mach. Learn. 45: 5-32.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H., Guisan, A. (2012): Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biog. 21: 481-497. DOI:10.1111/j.1466-8238.2011.00698.x.
Buhlmann, K.A., Akre, T.S.B., Iverson, J.B., Karapatakis, D., Mittermeier, R.A., Georges, A., Rhodin, A.G., van Dijk, P.P., Gibbons, J.W. (2009): A global analysis of tortoise and freshwater turtle distributions with identification of priority conservation areas. Chel. Conserv. Biol. 8: 116-149.
de la Fuente, M., Sterli, J., Maniel, I. (2014): Origin, Evolution and Biogeographic History of South American Turtles. Springer International Publishing, Switzerland.
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A. (2017): ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774-787. DOI:10.1111/ecog.02671.
Fagundes, C.K., Vogt, R.C., Souza, R.A., De Marco Jr., P. (2018): Vulnerability of turtles to deforestation in the Brazilian Amazon: indicating priority areas for conservation. Biol. Conser. 226: 300-310. DOI:10.1016/j.biocon.2018.08.009.
Famelli, S., Souza, F.L., Georges, A., Bertoluci, J. (2016): Movement patterns and activity of the Brazilian snake-necked turtle Hydromedusa maximiliani (Testudines: Chelidae) in southeastern Brazil. Amphibia-Reptilia 37: 215-228.
Ferreira, G.S., Bronzati, M., Langer, M.C., Sterli, J. (2018): Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5. DOI:10.1098/rsos.171773.
Girini, J.M., Palacio, F.X., Zelaya, P.V. (2017): Predictive modeling for allopatric Strix (Strigiformes: Strigidae) owls in South America: determinants of their distributions and ecological niche-based processes. J. Field Ornithol. 88: 1-15.
Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz, C. (2004): Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58: 1781-1793.
Guisan, A., Thuiller, W., Zimmermann, N.E. (2017): Habitat Suitability and Distribution Models: with Applications in R. Cambridge University Press.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.
Holt, B.G., Lessard, J.P., Borregaard, M.K., Fritz, S.A., Araujo, M.B., Dimitrov, D., Fabre, P.H., Graham, C.H., Graves, G.R., Jønsson, K.A., Nogues-Bravo, D., Wang, Z., Whittaker, R.J., Fjeldså, J., Rahbek, C. (2013): An update of Wallace’s zoogeographic regions of the world. Science 339: 74-78.
Hu, J., Jiang, Z., Chen, J., Qiao, H. (2015): Niche divergence accelerates evolution in Asian endemic Procapra gazelles. Sci. Rep. 5: 10069. DOI:10.1038/srep10069.
Hu, J., Broennimann, O., Guisan, A., Wang, B., Huang, Y., Jiang, J. (2016): Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci. Rep. 6: 32624. DOI:10.1038/srep32624.
Hua, X., Wiens, J.J. (2013): How does climate influence speciation? Am. Nat. 182: 1-12. DOI:10.1086/670690.
Ippi, S., Flores, V. (2001): Las tortugas neotropicales y sus áreas de endemismo. Acta Zool. Mex. 84: 49-63.
Kozak, K.H., Wiens, J.J. (2006): Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60: 2604-2621.
Kozak, K.H., Wiens, J.J. (2007): Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B 274: 2995-3003. DOI:10.1098/rspb.2007.1106.
Kruck, W., Helms, F., Geyh, M.A., Suriano, J.M., Marengo, H.G., Pereyra, F. (2011): Late Pleistocene-Holocene history of Chaco-Pampa sediments in Argentina and Paraguay. Quat. Sci. J. 60: 188-202.
Lundberg, J.G., Marshall, L.G., Guerrero, J., Horton, B., Malabarba, C.S.L., Wesselingh, F. (1998): The stage for Neotropical fish diversification: a history of tropical South American rivers. In: Phylogeny and Classification of Neotropical Fishes, p. 13-48. Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S., Lucena, C.A.S., Eds, Edipucrs, Porto Alegre, Brazil.
McCormack, J.E., Zellmer, A.J., Knowles, L.L. (2010): Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64: 1231-1244.
Mittermeier, R.A., van Dijk, P.P., Rhodin, A.G.J., Nash, S.D. (2015): Turtle hotspots: an analysis of the occurrence of tortoises and freshwater turtles in biodiversity hotspots, high-biodiversity wilderness areas, and turtle priority areas. Chel. Conserv. Biol. 14: 2-10.
Morando, M., Olave, M., Avila, L.J., Baker, E., Sites, J.W., Jr. (2015): Molecular phylogeny of the lizard clade Leiosaurae endemic to southern South America. Herpetologica 71: 322-331.
Naimi, B., Araújo, M.B. (2016): Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368-375. DOI:10.1111/ecog.01881.
Ortiz-Jaureguizar, E., Cladera, G.A. (2006): Paleoenvironmental evolution of southern South America during the Cenozoic. J. Arid Environ. 66: 498-532.
Pennington, R.T., Prado, D.E., Pendry, C.A. (2000): Neotropical seasonally dry forests and quaternary vegetation changes. J. Biog. 27: 261-273.
Pereira, A.G., Sterli, J., Moreira, F.R.R., Schrago, C.G. (2017): Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phyl. Evol. 113: 59-66.
Peterson, A.T., Soberón, J. (2012): Species distribution modeling and ecological niche modeling: getting the concepts right. Nat. & Conserv. 10: 102-107. DOI:10.4322/natcon.2012.019.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006): Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231-259.
Pinto-da-Rocha, R., Silva, M.B., Bragagnolo, C. (2005): Faunistic similarity and historic biogeography of the harvestmen of southern and southeastern Atlantic rain forest of Brazil. J. Arachnol. 33: 290-299.
Posso-Terranova, A., Andrés, J.A. (2016): Complex niche divergence underlies lineage diversification in Oophaga poison frogs. J. Biog. 43: 2002-2015.
Poveda-Martínez, D., Sosa, C.C., Chacón-Vargas, K., García-Merchán, V.H. (2016): Historical biogeography of five Characidium fish species: dispersal from the Amazon paleobasin to southeastern South America. PLoS One 11: e0164902. DOI:10.1371/journal.pone.0164902.
Pyron, R.A., Burbrink, F.T. (2009): Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Mol. Ecol. 18: 3443-3457.
Rato, C., Harris, D.J., Perera, A., Carvalho, S.B., Carretero, M.A., Rödder, D. (2015): A combination of divergence and conservatism in the niche evolution of the Moorish Gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS One 10: e0127980. DOI:10.1371/journal.pone.0127980.
Raxworthy, C.J., Ingram, C.M., Rabibisoa, N., Pearson, R.G. (2007): Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56: 907-923.
Reis, J., Bidau, C.J., Maestri, R., Martinez, P.A. (2018): Diversification of the climatic niche drove the recent processes of speciation in Sigmodontinae (Rodentia, Cricetidae). Mam. Rev. DOI:10.1111/mam.12128.
Rhodin, A.G.J., Métrailler, S., Vinke, T., Vinke, S., Artner, H., Mittermeier, R.A. (2009): Acanthochelys macrocephala (Rhodin, Mittermeier, and McMorris 1984) – big-headed Pantanal swamp turtle, Pantanal swamp turtle. Chel. Res. Monog. 5: 040.1-040.8. DOI:10.3854/crm.5.040.macrocephala.v1.2009. http://www.iucn-tftsg.org/cbftt/.
Rhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van Dijk, P.P. (2017): Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status, 8th Edition. Chel. Res. Monog. 7: 1-292. DOI:10.3854/crm.7.checklist.atlas.v8.2017.
Ribeiro, A.C., Menezes, N.A. (2015): Phylogenetic relationships of the species and biogeography of the characid genus Oligosarcus Günther, 1864 (Ostariophysi, Characiformes, Characidae). Zootaxa 3949: 41-81.
Rodrigues, J.F.M., Diniz-Filho, J.A.F. (2016): Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles. Mol. Phyl. Evol. 101: 352-358.
Rodrigues, J.F.M., Diniz-Filho, J.A.F. (2017): Dispersal is more important than climate in structuring turtle communities across different biogeographical realms. J. Biog. DOI:10.1111/jbi.13003.
Rodrigues, J.F.M., Lima-Ribeiro, M.S. (2018): Predicting where species could go: climate is more important than dispersal for explaining the distribution of a South American turtle. Hydrobiologia 808: 343-352. DOI:10.1007/s10750-017-3436-4.
Rodrigues, J.F.M., Coelho, M.T.P., Diniz-Filho, J.A.F. (2016a): Exploring intraspecific climatic niche conservatism to better understand species invasion: the case of Trachemys dorbigni (Testudines, Emydidae). Hydrobiologia 779: 127-134. DOI:10.1007/s10750-016-2805-8.
Rodrigues, J.F.M., Coelho, M.T.P., Varela, S., Diniz-Filho, J.A.F. (2016b): Invasion risk of the pond slider turtle is underestimated when niche expansion occurs. Freshwater Biol. 61: 1119-1127. DOI:10.1111/fwb.12772.
Rodrigues, J.F.M., Coelho, M.T.P., Ribeiro, B.R. (2018): Predicting fundamental and realized distributions based on thermal niche: a case study of a freshwater turtle. Acta Oecol. 88: 52-57. DOI:10.1016/j.actao.2018.03.005.
Rodríguez Tribaldos, V., White, N.J., Roberts, G.G., Hoggard, M.J. (2017): Spatial and temporal uplift history of South America from calibrated drainage analysis. Geochem. Geophys. Geosys. 18: 2321-2353. DOI:10.1002/2017GC006909.
Rundle, H.D., Nosil, P. (2005): Ecological speciation. Ecol. Lett. 8: 336-352. DOI:10.1111/j.1461-0248.2004.00715.x.
Ruso, G.E., Meyer, E., Das, A.J. (2017): Seasonal and diel environmental conditions predict Western Pond Turtle (Emys marmorata) behavior at a perennial and an ephemeral stream in Sequoia National Park, California. Chel. Conserv. Biol. 16: 20-28.
Sadoti, G., Gray, M.E., Farnsworth, M.L., Dickson, B.G. (2017): Discriminating patterns and drivers of multiscale movement in herpetofauna: the dynamic and changing environment of the Mojave desert tortoise. Ecol. Evol. 7: 7010-7022. DOI:10.1002/ece3.3235.
Salas, E.A.L., Seamster, V.A., Harings, N.M., Boykin, K.G., Alvarez, G., Dixon, K.W. (2017): Projected future bioclimate-envelope suitability for reptile and amphibian species of concern in south central USA. Herpetol. Conserv. Biol. 12: 522-547.
Slavenko, A., Itescu, Y., Ihlow, F., Meiri, S. (2016): Home range is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85: 106-114.
Soberon, J. (2007): Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10: 1115-1123.
Soberon, J.M. (2010): Niche and area of distribution modeling: a population ecology perspective. Ecography 33: 159-167.
Souza, F.L. (2004): Uma revisão sobre padrões de atividade, reprodução e alimentação de cágados brasileiros (Testudines, Chelidae). Phyllomedusa 3: 15-27.
Souza, F.L. (2005): Geographical distribution patterns of South American side-necked turtles (Chelidae), with emphasis on Brazilian species. Rev. Esp. Herpetol. 19: 33-46.
Souza, F.L., Cunha, A.F., Oliveira, M.A., Pereira, G.A.G., Reis, S.F. (2003): Preliminary phylogeographic analysis of the Neotropical freshwater turtle Hydromedusa maximiliani (Chelidae). J. Herpetol. 37: 427-433.
Stratmann, T.S.M., Barrett, K., Floyd, T.M. (2016): Locating suitable habitat for a rare species: evaluation of a species distribution model for bog turtles (Glyptemys muhlenbergii) in the southeastern United States. Herpetol. Conserv. Biol. 11: 199-213.
Stryszowska, K.M., Johnson, G., Mendoza, L.R., Langen, T.A. (2016): Species distribution modeling of the threatened Blanding’s turtle’s (Emydoidea blandingii) range edge as a tool for conservation planning. J. Herpetol. 50: 366-373. DOI:10.1670/15-089.
Suárez-Atilano, M., Rojas-Soto, O., Parra, J.L., Vázquez-Domínguez, E. (2017): The role of the environment on the genetic divergence between two Boa imperator lineages. J. Biog. 44: 2045-2056. DOI:10.1111/jbi.13006.
Tuanmu, M.-N., Jetz, W. (2014): A global 1-km consensus land-cover product for biodiversity and ecosystem modeling. Global Ecol. Biog. 23: 1031-1045. Data available on-line at http://www.earthenv.org/.
Tumini, G., Giri, F., Williner, V., Collins, P.A. (2016): The importance of biogeographical history and extant environmental conditions as drivers of freshwater decapod distribution in southern South America. Freshwater Biol. 61: 715-728. DOI:10.1111/fwb.12742.
Turchetto-Zolet, A.C., Pinheiro, F., Salgueiro, F., Palma-Silva, C. (2013): Phylogeographical patterns shed light on evolutionary process in South America. Mol. Ecol. 22: 1193-1213.
Vinke, T., Vinke, S., Richard, E., Cabrera, M.R., Paszko, L., Marano, P., Métrailler, S. (2011): Acanthochelys pallidipectoris (Freiberg 1945) – Chaco side-necked turtle. Chel. Res. Monog. 5: 065.1-065.7. DOI:10.3854/crm.5.065.pallidipectoris.v1.2011. http://www.iucn-tftsg.org/cbftt/.
Warren, D.L., Glor, R.E., Turelli, M. (2008): Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868-2883.
Wiens, J.J., Graham, C.H. (2005): Niche conservatism: integrating evolution, ecology, and conservation biology. Ann. Rev. Ecol. Evol. Syst. 36: 519-539.
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Davies, J.T., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M., Stephens, P.R. (2010): Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13: 1310-1324. DOI:10.1111/j.1461-0248.2010.01515.x.
Wilkinson, M.J., Marshall, L.G., Lundberg, J.G. (2006): River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. J. South Am. Earth Sci. 21: 151-172.
Wooten, J.A., Gibbs, H.L. (2012): Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. J. Evol. Biol. 25: 317-328.
Wooten, J.A., Camp, C.D., Combs, J.R., Dulka, E., Reist, A., Walker, D.M. (2013): Re-evaluating niche conservatism versus divergence in the woodland salamander genus Plethodon: a case study of the parapatric members of the Plethodon glutinosus species complex. Can. J. Zool. 91: 883-892. DOI:10.1139/cjz-2013-0097.
Zhang, M.-G., Slik, J.W.F., Ma, K.-P. (2017): Priority areas for the conservation of perennial plants in China. Biol. Conserv. 210: 56-63. DOI:10.1016/j.biocon.2016.06.007.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 851 | 102 | 8 |
Full Text Views | 22 | 4 | 2 |
PDF Views & Downloads | 26 | 6 | 4 |
Species distribution models (SDMs) are increasingly used to assess how ecological factors shape species distributions and diversification. Chelid turtles represent the richest family of chelonians in South America. Given the distributional disjunction and distinct habitats of four Acanthochelys species, we explored SDMs and niche overlap metrics between species pairs to evaluate the extent to which niche divergence or conservatism may have contributed to their geographic distribution patterns. None of the species pairs presented patterns consistent with niche conservatism suggesting that these species have different environmental requirements. However, when comparing species pairs co-occurring in the same watershed, results were conflicting. Niche divergence detected among Acanthochelys species indicate an interaction between ecological niche preference and geographical barriers for allopatric speciation. This interaction implies that ecological differentiation contributed to the diversification of Acanthochelys side-necked turtles that occur in South American freshwater environments.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 851 | 102 | 8 |
Full Text Views | 22 | 4 | 2 |
PDF Views & Downloads | 26 | 6 | 4 |