Environmental temperatures often regulate the activity and physiological processes of ectotherms. Because environmental temperatures can vary significantly among seasons, lizards exposed to different thermal conditions in different months could differ in how they thermoregulate or behave. Here, we present a combination of field, laboratory, and modeling approaches to examine thermoregulation, habitat thermal quality, and hours of thermal restriction on activity in a saxicolous population of Urosaurus ornatus in two thermally contrasting months (June and October) in a micro-insular mountain system in the northern Chihuahuan Desert in Mexico. Both active and preferred body temperatures did not vary between months. In this population, U. ornatus is an active thermoregulator with highly accurate and efficient thermoregulation despite the thermal quality in both months. However, during the breeding season (June) activity is restricted (i.e., high number of hours of restriction) compared to the non-breeding season (October). Therefore, our results suggest that this saxicolous population of U. ornatus could be threatened by global climate change and it is essential to determine a conservation strategy for this population.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ackley, J.W., Angilletta, M.J. Jr., DeNardo, D., Sullivan, B., Wu, J. (2015): Urban heat island mitigation strategies and lizard thermal ecology: landscaping can quadruple potential activity time in an arid city. Urban Ecosyst. 18: 1447-1459.
Adolph, S.C. (1990): Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71: 315-327.
Angert, A.L., Sheth, S.N., Paul, J.R. (2011): Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integr. Comp. Biol. 51: 733-750.
Angilletta Jr., M.J. (2001): Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82: 3044-3056.
Angilletta Jr., M.J. (2009): Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University Press, New York.
Angilletta Jr., M.J., Niewiarowski, P.H., Dunham, A.E., Leaché, A.D., Porter, W.P. (2004): Bergmann’s clines in ectotherms: illustrating a life-history perspective withsceloporine lizards. Am. Nat. 164: 168-183.
Avery, R.A. (1979): Lizards-a Study in Thermoregulation. University Park Press, Baltimore.
Avery, R.A. (1982): Field studies of body temperatures and thermoregulation. In: Biology of the Reptilia, p. 93-166. Gans, F.H., Pough, F.H., Eds, Academic Press, New York.
Bakken, G.S. (1989): Arboreal perch properties and the operative temperature experienced by small animals. Ecology 70: 922-930.
Ballesteros-Barrera, C., Martínez-Meyer, E., Gadsden, H. (2007): Effects of land-cover transformation and climate change on the distribution of two microendemic lizards, genus Uma, of northern Mexico. J. Herpetol. 41: 733-740.
Bartholomew, G.A. (1982): Physiological control of temperature. In: Biology of the Reptilia, p. 167-211. Gans, C., Pough, F.H., Eds, Academic Press, New York.
Bauwens, D., Hertz, P.E., Castilla, A.M. (1996): Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology 77: 1818-1830.
Beal, M.S., Lattanzio, M.S., Miles, D.B. (2014): Differences in the thermal physiology of adult Yarrow’s spiny lizards (Sceloporus jarrovii) in relation to sex and body size. Ecol. Evol. 4: 4220-4229.
Blouin-Demers, G., Nadeau, P. (2005): The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology 86: 560-566.
Blouin-Demers, G., Weatherhead, P.J. (2001): Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82: 3025-3043.
Brattstrom, B. (1965): Body temperatures of reptiles. Am. Midl. Nat. 73: 376-422.
Brewster, C.L., Beaupre, S.J. (2019): The effect of body posture on available habitat and activity-time in a lizard: implications for thermal ecology studies. J. Therm. Biol. 82: 10-17.
Bustos Zagal, M.G., Manjarrez, J., Castro-Franco, R. (2013): Uso de microhabitat y termorregulacion en Sceloporus horridus horridus (Wiegmann 1939) (Sauria: Phrynosomatidae). Acta Zool. Mex. (n.s.) 29: 153-163.
Camacho, A., Rusch, T.W. (2017): Methods and pitfalls of measuring thermal preference and tolerance in lizards. J. Therm. Biol. 68: 63-72.
Chown, S.L., Hoffmann, A.A., Kristensen, T.N., Angilletta, M.J. Jr., Stenseth, N.C., Pertoldi, C. (2010): Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43: 3-15.
Congdon, J.D., Vitt, L.J., Van Loben Sels, R.C., Ohmart, R.D. (1982): The ecological significance of water flux rates in arboreal desert lizards of the genus Urosaurus. Physiol. Zool. 55: 317-322.
Cuervo-Robayo, A.P., Ureta, C., Gómez-Albores, M.A., Meneses-Mosquera, K., Teilez-Valdes, O., Martínez-Meyer, E. (2020): One hundred years of climate change in Mexico. PLoS ONE 15 (7): e0209808.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Martin, P.R. (2008): Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105: 6668-6672.
Díaz, J.A., Cabezas-Díaz, S. (2004): Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18: 867-875.
Domínguez-Guerrero, S.F., Muñoz, M.M., Pasten-Téllez, D., Arenas-Moreno, D.M., Rodríguez-Miranda, L.A., Manríquez-Morán, N.L., Méndez-de la Cruz, F.R. (2019): Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population. J. Therm. Biol. 79: 135-143.
Dzialowski, E.M. (2005): Use of operative temperature and standard operative temperature models in thermal biology. J. Therm. Biol. 30: 317-334.
Enríquez-Anchondo, I.D. (2003): Las cactáceas de Samalayuca. Cienc. Front., Rev. Cienc. Tec. UACJ 2: 55-62.
Feldman, C.R., Flores-Villela, O., Papenfuss, T.J. (2011): Phylogeny, biogeography, and display evolution in the tree and brush lizard genus Urosaurus (Squamata: Phrynosomatidae). Mol. Phylogen. Evol. 61: 714-725.
Gadsden, H., Castañeda, G., Huitrón-Ramírez, R.A. (2015): Sceloporus cyanostictus. Field and preferred body temperature. Herpetol. Rev. 46: 436-437.
Gadsden, H., Ruiz, S., Castañeda, G., Lara-Reséndiz, R.A. (2018): Selected body temperature in Mexican lizard species. Glob. J. Ecol. 3: 001-004.
Gadsden, H., Ballesteros-Barrera, C., Hinojosa de la Garza, O., Castañeda, G., García-De la Peña, C., Lemos-Espinal, J.A. (2012): Effects of land-cover transformation and climate change on the distribution of two endemic lizards, Crotaphytus antiquus and Sceloporus cyanostictus, of northern Mexico. J. Arid Environ. 83: 1-9.
García, A. (2008): The use of habitat and time by lizards in a tropical deciduous forest in western Mexico. Stud. Neotrop. Fauna Environ. 43: 107-115.
García-de la Peña, C., Gadsden, H., Contreras-Balderas, A., Castañeda, G. (2007): Ciclos de actividad diaria y estacional de un gremio de saurios en las dunas de arena de Viesca, Coahuila, México. Rev. Mex. Biodiv. 78: 141-147.
Garcia-Porta, J., Irisarri, I., Kirchner, M., Rodríguez, A., Kirchhof, S., Brown, J.L., MacLeod, A., Turner, A.P., Ahmadzadeh, F., Albaladejo, G., Crnobrnja-Isailovic, J., De la Riva, I., Fawzi, A., Galán, P., Göçmen, B., Harris, D.J., Jiménez-Robles, O., Joger, U., Jovanović Glavaš, O., Karış, M., Koziel, G., Künzel, S., Lyra, M., Miles, D., Nogales, M., Anıl Oğuz, M., Pafilis, P., Rancilhac, L., Rodríguez, N., Rodríguez Concepción, B., Sanchez, E., Salvi, D., Slimani, T., S’khifa, A., Turk Qashqaei, A., Žagar, A., Lemmon, A., Moriarty Lemmon, E., Carretero, M.A., Carranza, S., Philippe, H., Sinervo, B., Müller, J., Vences, M., Wollenberg Valero, K.C. (2019): Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat. Comm. 10: 4077.
Gilbert, A.L., Miles, D.B. (2017): Natural selection on thermal preference, critical thermal maximum and locomotor performance. Proc. R. Soc. B 284: 20170536.
Gilbert, A.L., Miles, D.B. (2019): Spatiotemporal variation in thermal niches suggests lability rather than conservatism of thermal physiology along an environmental gradient. Biol. J. Linn. Soc. 128: 263-277.
Goldberg, S.R. (2013): Reproduction in the Ornate Tree Lizard, Urosaurus ornatus (Squamata: Phrynosomatidae), from Sonora, Mexico. Sonoran Herpetol. 26: 49-51.
Goldberg, S.R. (2014): Reproductive cycles of lizards from western North America. Sonoran Herpetol. 27: 20-29.
Grigg, J.W., Buckley, L.B. (2013): Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol. Lett. 9: 20121056.
Guralnick, R., Pearman, P.B. (2010): Using species occurrence databases to determine niche dynamics of montane and lowland species since the Last Glacial Maximum. In: Data Mining for Global Trends in Mountain Biodiversity, p. 125-134. Taylor & Francis Group, Boca Raton, Florida.
Hammerson, G.A., Frost, D.R., Santos-Barrera, G. (2007a): Uta stansburiana. The IUCN Red List of Threatened Species 2007: e.T64180A12744259.
Hammerson, G.A., Frost, D.R., Santos-Barrera, G. (2007b): Urosaurus ornatus. The IUCN Red List of Threatened Species 2007: e.T64174A12750887.
Herrel, A., Meyers, J.J., Vanhooydonck, B. (2001): Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol. J. Linn. Soc. 74: 305-314.
Hertz, P.E., Huey, R.B., Stevenson, R.D. (1993): Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat. 142: 796-818.
Huey, R.B. (1982): Temperature, physiology, and ecology of reptiles. In: Biology of the Reptilia, p. 25-91. Gans, C., Pough, F.H., Eds, Academic Press, New York.
Huey, R.B., Slatkin, M. (1976): Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51: 363-384.
Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Perez, H.J.A., Garland, T. (2009): Why tropical forest lizards are vulnerable to climate warming?. Proc. R. Soc. Lond. B Biol. Sci. 276: 1939-1948.
Hult, S.M., Germano, D.J. (2015): Population structure, size, and activity patterns of Phrynosoma blainvillii in the San Joaquin Desert of California. Herpetol. Conserv. Biol. 10: 839-849.
Jiménez-Robles, O., De la Riva, I. (2019): Lizards in the mist: thermal niches constrained by habitat and microclimates in the Andes of southern Bolivia. J. Biogeog. 46: 1676-1686.
Kearney, M., Shine, R., Porter, W.P. (2009): The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. 106: 3835-3840.
Kirchhof, S., Hetem, R.S., Lease, H.M., Miles, D.B., Mitchell, D., Müller, J., Rödel, M.O., Sinervo, B., Wassenaar, T., Murray, I.W. (2017): Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere 8: e02033.
Kubisch, E., Corbalán, V., Ibargüengoytía, N.R., Sinervo, B. (2016): Local extinction risk of three species of lizard from Patagonia as a result of global warming. Can. J. Zool. 94: 49-59.
Lara-Reséndiz, R.A., Gadsden, H., Rosen, P.C., Sinervo, B., Méndez-de la Cruz, F.R. (2015): Thermoregulation of two sympatric species of horned lizard in the Chihuahuan Desert and their local extinction risk. J. Therm. Biol. 48: 1-10.
Lara-Resendiz, R.A., Galina-Tessaro, P., Pérez-Delgadillo, A.G., Valdez-Villavicencio, J.H., Méndez-de la Cruz, F.R. (2019): Efectos del cambio climático en una especie de lagartija termófila de amplia distribución (Dipsosaurus dorsalis): un enfoque ecofisiológico. Rev. Mex. Biodiv. 90: e902888.
Lara-Resendiz, R.A., Jezkova, T., Rosen, P.C., Méndez-de la Cruz, F.R. (2014): Thermoregulation during the summer season in the Goode’s horned lizard Phrynosoma goodei (Iguania: Phrynosomatidae) in Sonoran Desert. Amphibia-Reptilia 35: 161-172.
Lemos-Espinal, J.A., Smith, H.M. (2007): Amphibians and Reptiles of the State of Chihuahua, Mexico. Universidad Nacional Autónoma de México; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.
Lemos-Espinal, J.A., Smith, G.R., Ballinger, R.E. (1997): Temperature relationships of the tropical tree lizard (Urosaurus bicarinatus) from the Cañón del Zopilote, Guerrero, Mexico. Herpetol. J. 7: 26-27.
Mathies, T., Andrews, R.M. (1997): Influence of pregnancy on the thermal biology of the lizard, Sceloporus jarrovi: why do pregnant females exhibit low body temperatures? Funct. Ecol. 11: 498-507.
Medina, M., Fernández, J.B., Charruau, P., Méndez de la Cruz, F., Ibargüengoytía, N. (2016): Vulnerability to climate change of Anolis allisoni in the mangrove habitats of Banco Chinchorro Islands, Mexico. J. Therm. Biol. 58: 8-14.
Miles, D.B. (1994): Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change. Am. Zool. 34: 422-436.
Minoli, I., Cacciali, P., Morando, M., Avila, L.J. (2019): Predicting spatial and temporal effects of climate change on the SouthAmerican lizard genus Teius (Squamata: Teiidae). Amphibia-Reptilia 40: 313-326.
Montgomery, C.E., Mackessy, S.P. (2003): Natural history of the Texas horned lizard, Phrynosoma cornutum (Phrynosomatidae), in southeastern Colorado. Southwest. Nat. 48: 111-118.
Ortega, Z., Martin-Vallejo, F.J. (2019): Main factors affecting lacertid lizard thermal ecology. Integrat. Zool. 14: 293-305.
Ortega, Z., Mencia, A., Giroux, A., Perez-Mellado, V. (2019): Broad seasonal changes in thermoregulation of Podarcis lilfordi (Squamata Lacertidae) at Binicodrell Islet (Menorca, Spain). Herpetozoa 32: 57-63.
Paranjpe, D.A., Bastiaans, E., Patten, A., Cooper, R.D., Sinervo, B. (2013): Evidence of maternal effects on temperature preference in side-blotched lizards: implications for evolutionary response to climate change. Ecol. Evol. 3: 1977-1991.
Parmesan, C. (2006): Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637-669.
Pontes-Silva, E., Magnusson, W.E., Sinervo, B., Caetano, G.H., Miles, D.B., Colli, G.R., Diele-Viegas, L.M., Fenker, J., Santos, J.C., Werneck, F.P. (2018): Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. J. Therm. Biol. 73: 50-60.
Porter, W.P., Mitchell, J.W., Beckman, W.A., DeWitt, C.B. (1973): Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13: 1-54.
Quiñónez Martínez, M., Enríquez Anchondo, I.D., Flores Margez, J.P., Palacios Ramírez, K.Y., Olivas Sánchez, M.P., Garza Ocañas, F., Lebgue Keleng, T., Nájera Medellin, J.A. (2018): Comunidades vegetales en suelo de ecosistema semiárido y su relación con hongos micorrízicos. Revista Terra Latinoamericana 36: 381.
Rivera-Hernández, L.A. (2012): Termorregulación y modelación de nicho ecológico espacial de Uta stansburiana stejnegeri en las dunas de Samalayuca, Chihuahua. Master’s Thesis. Universidad Autónoma de Ciudad Juárez. Ciudad Juárez, Chihuahua, México.
Rodríguez-Muñoz, M. (2015): Ecología térmica y modelo de distribución potencial de Sceloporus maculosus (Squamata: Phrynosomatidae) en un área del norte de México. Master Thesis. Universidad Juárez del Estado de Durango-Facultad de Ciencias Biológicas, Gómez Palacio, Durango.
Rzedowski, J. (1978): Vegetación de México. Limusa, México.
Sears, M.W., Angilletta, M.J. Jr., Schuler, M.S., Borchert, J., Dilliplane, K.F., Stegman, M., Rush, T.W., Mitchell, W.A. (2016): Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc. Natl. Acad. Sci. U.S.A. 113: 10595-10600.
Sears, M.W., Raskin, E., Angilletta, M.J. Jr. (2011): The world is not flat: defining relevant thermal landscapes in the context of climate change. Int. Comp. Biol. 51: 666-675.
Siliceo-Cantero, H.H., Garcia, A., Gao, Y. (2016): Abundance and habitat use of the lizard Sceloporus utiformis (Squamata: Phrynosomatidae) during the seasonal transition in a tropical environment. Rev. Mex. Biodiv. 87: 1301-1307.
Sinervo, B., Méndez-de la Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón- Espinosa, M.L., Meza-Lázaro, R.N., Gadsden, H., Avila, L.J., Morando, M., De la Riva, I.J., Sepulveda, P.V., Rocha, C.F.D., Ibargüengoytía, N., Puntriano, C.A., Massot, M., Lepetz, V., Oksanen, T.A., Chapple, D.G., Bauer, A.M., Branch, W.R., Clobert, J., Sites, J.W. (2010): Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894-899.
Sinervo, B., Miles, D.B., Martínez-Méndez, N., Lara-Reséndiz, R., Méndez-de la Cruz, F.R. (2011): Response to comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332: 537.
Sinervo, B., Lara Reséndiz, R.A., Miles, D.B., Lovich, J.E., Ennen, J.R., Müller, J., Cooper, R.D., Rosen, P.C., Stewart, J.A.E., Santos, J.C., Sites Jr., J.W., Gibbons, P.M., Goode, E.V., Hillard, L.S., Welton, L., Agha, M., Caetano, G., Vaughn, M., Meléndez Torres, C., Gadsden, H., Casteñada Gaytan, G., Galina Tessaro, P., Valle Jiménez, F.I., Valdez Villavicencio, J., Martínez Méndez, N., Woolrich Piña, G., Luja Molina, V., Díaz de la Vega Pérez, A., Arenas Moreno, D.M., Domínguez Guerrero, S., Fierro, N., Butterfield, S., Westpha, M., Huey, R.B., Mautz, W., Sánchez Cordero, V., Méndez de la Cruz, F.R. (2017): Climate change and collapsing thermal niches of Mexican endemic reptiles. White paper for the environmental working group of the UC-Mexico initiative, University of California. Available at: http://escholarship.org/uc/item/4xk077hp.
Sinervo, B., Miles, D.B., Wu, Y., Méndez-de la Cruz, F.R., Kirchhif, S., Qi, Y. (2018): Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai-Tibetan Plateau. Int. Zool. 13: 450-470.
Smith, G.R., Ballinger, R.E. (1994): Thermal tolerance in the tree lizard (Urosaurus ornatus) from a desert population and a low montane population. Can. J. Zool. 72: 2066-2069.
Smith, G.R., Ballinger, R.E. (1995): Temperature relationships of the tree lizard, Urosaurus ornatus, from desert and low-elevation montane populations in the southwestern USA. J. Herpetol. 29: 126-129.
Stellatelli, O.A., Villalba, A., Block, C., Vega, L.E., Dajil, J.E., Cruz, F.B. (2018): Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata: Liolaemidae). J. Therm. Biol. 73: 61-70.
Taylor, E.N., Diele-Viegas, L.M., Gngloff, E.J., Hall, J.M., Halpern, B., Massey, M.D., Rödder, D., Rollinson, N., Spears, S., Sun, B.-J., Telemeco, R.S. (2020): The thermal ecology and physiology of reptiles and amphibians: a user’s guide. J. Exp. Zool. In press.
Valenzuela-Ceballos, S., Castañeda, G., Rioja-Paradela, T., Carrillo-Reyes, A., Bastiaans, E. (2015): Variation in the thermal ecology of an endemic iguana from Mexico reduces its vulnerability to global warming. J. Therm. Biol. 48: 56-64.
Vitt, L.J., Van Loben Sels, R.C., Ohmart, R.D. (1981): Ecological relationships among arboreal desert lizards. Ecology 62: 398-410.
Waldschmidt, S. (1980): Orientation to the sun by the iguanid lizards Uta stansburiana and Sceloporus undulatus: hourly and monthly variations. Copeia 1980: 458-462.
Wiens, J.J. (1993): Phylogenetic systematics of the tree lizards (genus Urosaurus). Herpetologica 49: 399-420.
Yuan, F.L., Freedman, A.H., Chirio, L., LeBreton, M., Bonebrake, T.C. (2018): Ecophysiological variation across a forest-ecotone gradient produces divergent climate change vulnerability within species. Ecography 41: 1627-1637.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 550 | 121 | 18 |
Full Text Views | 117 | 0 | 0 |
PDF Views & Downloads | 136 | 4 | 0 |
Environmental temperatures often regulate the activity and physiological processes of ectotherms. Because environmental temperatures can vary significantly among seasons, lizards exposed to different thermal conditions in different months could differ in how they thermoregulate or behave. Here, we present a combination of field, laboratory, and modeling approaches to examine thermoregulation, habitat thermal quality, and hours of thermal restriction on activity in a saxicolous population of Urosaurus ornatus in two thermally contrasting months (June and October) in a micro-insular mountain system in the northern Chihuahuan Desert in Mexico. Both active and preferred body temperatures did not vary between months. In this population, U. ornatus is an active thermoregulator with highly accurate and efficient thermoregulation despite the thermal quality in both months. However, during the breeding season (June) activity is restricted (i.e., high number of hours of restriction) compared to the non-breeding season (October). Therefore, our results suggest that this saxicolous population of U. ornatus could be threatened by global climate change and it is essential to determine a conservation strategy for this population.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 550 | 121 | 18 |
Full Text Views | 117 | 0 | 0 |
PDF Views & Downloads | 136 | 4 | 0 |