Galápagos marine iguanas are primarily associated with the marine environment and show special nutritional adaptations. They are the only lizards worldwide that forage on marine macroalgae. Until now, consumed algae have been identified by direct observations during their feeding activities and microscopic identification in faeces samples. In this study, we use a novel DNA metabarcoding approach to identify consumed algal species from the faeces of marine iguanas. We developed primers for the ribulose-bisphosphate carboxylase (rbcL) gene and applied a metabarcoding approach to 25 individual faeces samples collected in four representative sites of two subspecies (Amblyrhynchus cristatus mertensi and A. c. godzilla), found in the San Cristóbal Island. We detected 18 consistently occurring macroalgal operational taxonomic units (OTUs). Most of the OTUs were assigned to Rhodophyta (red algae) and only one OTU to Chlorophyta (green algae). Despite the number of consumed algal species did not differ between two subspecies (OTU richness; P = 0.383), diet overlap level between A. c. mertensi and A. c. godzilla was low (Schoener index = 0.345), suggesting that both subspecies consumed different algal species in their natural environment. Further studies are needed to understand whether the difference of consumed algae reflects disparities in the abundance of algal species between sites, or whether iguanas of the two genetically differentiated subspecies prefer distinct algal species.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alberdi, A., Aizpurua, O., Bohmann, K., Gopalakrishnan, S., Lynggaard, C., Nielsen, M., Gilbert, M.T.P. (2019): Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19: 327-348.
Anslan, S., Bahram, M., Hiiesalu, I., Tedersoo, L. (2017): PipeCraft: flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Mol. Ecol. Resour. 17: e234-e240.
Arteaga, A., Bustamante, L., Vieira, J., Tapia, W., Guayasamin, J.M. (2019): Reptiles of the Galápagos: Life on the Enchanted Islands. Tropical Herping, Quito, Ecuador, 208 pp.
Banks, S. (2002): Ambiente Físico. In: Reserva Marina de Galápagos: Línea base de la Biodiversidad, p. 22-37. Danulat, E., Edgar, G.J., Eds, Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. (2009): BLAST+: architecture and applications. BMC Bioinf. 10: 421.
Carpenter, C.C. (1966): The marine iguana of the Galapagos Islands: its behavior and ecology. Proc. Calif. Acad. Sci.
Carrion-Cortez, J.A., Zarate, P., Seminoff, J.A. (2010): Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J. Mar. Biol. Assoc. U.K. 90: 1005-1013.
Clarke, K., Gorley, R. (2006): PRIMER V6: User Manual/Tutorial. Primer-E Ltd., Plymouth, 192 pp.
De Caceres, M., Jansen, F., De Caceres, M.M. (2016): Package ‘indicspecies’. R package.
Drent, J., Van Marken Lichtenbelt, W.D., Wikelski, M. (1999): Effects of foraging mode and season on the energetics of the marine iguana, Amblyrhynchus cristatus. Functional Ecology 13: 493-499.
Edgar, R.C. (2013): UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.
Ficetola, G.F., Coissac, E., Zundel, S., Riaz, T., Shehzad, W., Bessiere, J., Taberlet, P., Pompanon, F. (2010): An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11: 434.
Frøslev, T.G., Kjøller, R., Bruun, H.H., Ejrnæs, R., Brunbjerg, A.K., Pietroni, C., Hansen, A.J. (2017): Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8: 1188.
Frost, I., Beck Frost, M. (1983): Limitations to algal growth in the Galápagos islands: its consequences on the breeding strategy of the marine iguana Amblyrhynchus cristatus. Noticias de Galápagos 37: 23-24.
Garske, L.E. (2002): Macroalgas marinas. In: Reserva Marina de Galápagos: Línea base de la Biodiversidad, p. 419-439. Danulat, E., Edgar, G.J., Eds, Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador.
Geer, L.Y., Marchler-Bauer, A., Geer, R.C., Han, L., He, J., He, S., Liu, C., Shi, W., Bryant, S.H. (2009): The NCBI biosystems database. Nucleic Acids Res. 38: D492-D496.
Hu, Z.-M., Fraser, C. (2016): Seaweed Phylogeography. Springer.
Ibáñez, A., Menke, M., Quezada, G., Jiménez-Uzcátegui, G., Schulz, S., Steinfartz, S. (2017): Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus). PeerJ 5: e3689.
Ibáñez, A., Steinfartz, S., Jiménez-Uzcátegui, G. (2018): Iguanas marinas. Atlas de Galápagos, Ecuador: Especies Nativas e Invasoras. In, p. 103-109. Quito, FCD and WWF-Ecuador.
Ibáñez, A., Bletz, M.C., Quezada, G., Geffers, R., Jarek, M., Vences, M., Steinfartz, S. (2021): No impact of a short-term climatic “El Niño” fluctuation on gut microbial diversity in populations of the Galápagos marine iguana (Amblyrhynchus cristatus). Sci. Nat. 108.
Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson, D.L., Kress, W.J., Kuzmina, M.L., Rubenstein, D.I., Wang, W., Pringle, R.M. (2015): DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. 112: 8019-8024.
Katoh, K., Rozewicki, J., Yamada, K.D. (2017): MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics 20: 1160-1166.
Lankau, E.W., Hong, P.-Y., Mackie, R.I. (2012): Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Mol. Ecol. 21: 1779-1788.
Larsson, J. (2020): eulerr: area-proportional Euler and Venn diagrams with ellipses. R package. version 6.1.0, https://cran.r-project.org/package=eulerr.
Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., López-Bautista, J.M., Zuccarello, G.C., De Clerck, O. (2014): DNA-based species delimitation in algae. Eur. J. Phycol. 49: 179-196.
Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R. (2008): Evolution of mammals and their gut microbes. Science 320: 1647-1651.
MacLeod, A., Rodríguez, A., Vences, M., Orozco-terWengel, P., García, C., Trillmich, F., Gentile, G., Caccone, A., Quezada, G., Steinfartz, S. (2015): Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282: 20150425.
Manhart, J.R. (1994): Phylogenetic analysis of green plant rbcL sequences. Mol. Phylogen. Evol. 3: 114-127.
Miralles, A., Macleod, A., Rodríguez, A., Ibáñez, A., Jiménez-Uzcategui, G., Quezada, G., Vences, M., Steinfartz, S. (2017): Shedding light on the Imps of Darkness: an integrative taxonomic revision of the Galápagos marine iguanas (genus Amblyrhynchus). Zool. J. Linn. Soc. 181: 678-710.
Moity, N., Delgado, B., Salinas de León, P. (2019): Mangroves in the Galapagos islands: distribution and dynamics. PLoS One 14: 1-35.
Nagy, K.A., Shoemaker, V.H. (1984): Field energetics and food consumption of the Galápagos marine iguana, Amblyrhynchus cristatus. Physiol. Zool. 57: 281-290.
Nielsen, J.M., Clare, E.L., Hayden, B., Brett, M.T., Kratina, P. (2018): Diet tracing in ecology: method comparison and selection. Methods Ecol. Evol. 9: 278-291.
Nilsson, R.H., Larsson, K.-H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L. (2018): The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47: D259-D264.
Ogle, D.H. (2019): dietOverlap: computes indices of diet overlap between two species. https://rdrr.io/github/droglenc/FSAmisc/man/dietOverlap.html.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R., Simpson, G.L., Solymos, P., Stevens, M., Wagner, H. (2015): R package ‘vegan’: community ecology package.
Palacios, D.M. (2002): Factors influencing the island-mass effect of the Galápagos Archipelago. Geophys. Res.Lett. 29: 49-1-49-4.
Palacios, D.M. (2004): Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep Sea Res. Part II Top. Stud. Oceanogr. 51: 43-57.
Pompanon, F., Deagle, B.E., Symondson, W.O., Brown, D.S., Jarman, S.N., Taberlet, P. (2012): Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21: 1931-1950.
R-Core-Team (2019): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Ratnasingham, S., Hebert, P.D.N. (2007): BOLD: the barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7: 355-364.
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F. (2016): VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
Rubenstein, D.R., Wikelski, M. (2003): Seasonal changes in food quality: a proximate cue for reproductive timing in marine iguanas. Ecology 84: 3013-3023.
Saunders, G.W., Kucera, H. (2010): An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam., Algol. 31: 487-528.
Saunders, G.W., Moore, T.E. (2013): Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28: 31-43.
Schaeffer, B.A., Morrison, J.M., Kamykowski, D., Feldman, G.C., Xie, L., Liu, Y., Sweet, W., McCulloch, A., Banks, S. (2008): Phytoplankton biomass distribution and identification of productive habitats within the Galapagos marine reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens. Environ. 112: 3044-3054.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F. (2009): Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.
Schoener, T.W. (1970): Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408-418.
Shepherd, S.A., Hawkes, M.W. (2005): Algal food preferences and seasonal foraging strategy of the marine iguana, Amblyrhynchus cristatus, on Santa Cruz, Galápagos. Bull. Mar. Sci. 77: 51-72.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013): MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
Tompkins, P., Wolff, M. (2017): Galápagos macroalgae: a review of the state of ecological knowledge. Rev. Biol. Trop. 65: 375-392.
Trillmich, K.G., Trillmich, F. (1986): Foraging strategies of the marine iguana, Amblyrhynchus cristatus. Behav. Ecol. Sociobiol. 18: 259-266.
Vinueza, L., Flores, M. (2002): Comunidades intermareales rocosas. In: Reserva Marina de Galápagos: Línea base de la Biodiversidad, p. 98-118. Danulat, E., Edgar, G.J., Eds, Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador.
Vinueza, L.R., Branch, G.M., Branch, M.L., Bustamante, R.H. (2006): Top-down herbivory and bottom-up El Niño effects on Galápagos rocky-shore communities. Ecol. Monogr. 70: 111-131.
Wallace, R.K., Ramsey, J.S. (1983): Reliability in measuring diet overlap. Can. J. Fish. Aquat. Sci. 40: 347-351.
Wikelski, M., Gall, B., Trillmich, F. (1993): Ontogenetic changes in food intake and digestion rate of the herbivorous marine iguana (Amblyrhynchus cristatus, Bell). Oecologia 94: 373-379.
Wikelski, M., Trillmich, F. (1994): Foraging strategies of the Galápagos marine iguana (Amblyrhynchus cristatus): adapting behavioral rules to ontogenetic size change. Behaviour 128: 255-279.
Wikelski, M., Wrege, P.H. (2000): Niche expansion, body size, and survival in Galápagos marine iguanas. Oecologia 124: 107-115.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1529 | 541 | 42 |
Full Text Views | 156 | 21 | 2 |
PDF Views & Downloads | 161 | 34 | 0 |
Galápagos marine iguanas are primarily associated with the marine environment and show special nutritional adaptations. They are the only lizards worldwide that forage on marine macroalgae. Until now, consumed algae have been identified by direct observations during their feeding activities and microscopic identification in faeces samples. In this study, we use a novel DNA metabarcoding approach to identify consumed algal species from the faeces of marine iguanas. We developed primers for the ribulose-bisphosphate carboxylase (rbcL) gene and applied a metabarcoding approach to 25 individual faeces samples collected in four representative sites of two subspecies (Amblyrhynchus cristatus mertensi and A. c. godzilla), found in the San Cristóbal Island. We detected 18 consistently occurring macroalgal operational taxonomic units (OTUs). Most of the OTUs were assigned to Rhodophyta (red algae) and only one OTU to Chlorophyta (green algae). Despite the number of consumed algal species did not differ between two subspecies (OTU richness; P = 0.383), diet overlap level between A. c. mertensi and A. c. godzilla was low (Schoener index = 0.345), suggesting that both subspecies consumed different algal species in their natural environment. Further studies are needed to understand whether the difference of consumed algae reflects disparities in the abundance of algal species between sites, or whether iguanas of the two genetically differentiated subspecies prefer distinct algal species.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1529 | 541 | 42 |
Full Text Views | 156 | 21 | 2 |
PDF Views & Downloads | 161 | 34 | 0 |