Numerous dietary studies have shown that European vipers (genus Vipera) present low feeding frequency and a specialist diet, which is characterised by a marked ontogenetic shift. However, how eco-geographic factors shape species’ feeding ecology remains scarcely addressed. We investigated the feeding ecology of the Iberian adder, Vipera seoanei, examining 402 specimens distributed across its distributional range and addressing how biological, temporal and eco-geographic factors relate to the species feeding activity and dietary consumption. Our results indicated a low feeding frequency in the species, higher in juveniles than in adults. Adult females showed higher rates of prey consumption than adult males, which match to the distinct reproductive demands of both sexes, although no differences between reproductive and non-reproductive females were found. V. seoanei preyed on a varied taxa spectrum, but showed a rather specialist diet based on small mammals. Amphibians and reptiles were also an important part of its diet, particularly in the juveniles. Body size was found as the single biological trait related to the consumption of major prey groups, supporting the occurrence of an ontogenetic shift in the diet. Two habitat and two climatic factors correlated to the consumption of major prey groups, reflecting the ecological requirements of prey across the viper’s range. Overall, this study extends the existing knowledge on the feeding ecology of European vipers, signalling how energy intake and allometric constraints shape the feeding activity and dietary consumption of the species across the geography, leading to distinct feeding strategies in juveniles and adults.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anđelković, M., Nikolić, S., Tomović, L. (2021): Reproductive characteristics, diet composition and fat reserves of nose-horned vipers (Vipera ammodytes). British Journal of Herpetology 31: 151-161.
Arnold, S.J. (1993): Foraging theory and prey-size relations in snakes. In: Snakes: Ecology and Behaviour, p. 87-116.
Barbosa, A., Benzal, J. (1996): Diversity and abundance of small mammals in Iberia: Peninsular effect or habitat suitability. Zeitschrieft für Säugetierkunde 61: 236-241.
Baron, J.P. (1992): Régime et cycles alimentaires de la vipère d’orsini. Revue D’Ecologie 47: 1-25.
Bea, A., Braña, F., Baron, J.P., Saint Girons, H. (1992): Régimes et cycles alimentaires des vipères européennes (Reptilia, Viperidae). Année Biologique 31: 25-44.
Blouin-Demers, G., Weatherhead, P.J. (2001): An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta. J. Anim. Ecol. 70 (6): 1006-1013.
Bonnet, X., Naulleau, G., Shine, R., Lourdais, O. (2001): Short-term versus long-term effects of food intake on reproductive output in a viviparous snake, Vipera aspis. Oikos 92: 297-308.
Braña, F., Bea, A., Saint Girons, H. (1988): Composición de la dieta y ciclos de alimentación en Vipera seoanei Lataste, 1879. Variaciones en relación con la edad y el ciclo reproductor. MUNIBE (Ciencias naturales) 40: 19-27.
BRC (Biological Records Centre) (2021): https://www.coleoptera.org.uk/home.
Brito, J.C. (2004): Feeding ecology of Vipera latastei in northern Portugal ontogenetic shifts, prey size and seasonal variations. Herpetological Journal 14: 13-19.
Brito, J.C., Rebelo, R. (2003): Differential growth and mortality affect sexual size dimorphism in Vipera latastei. Copeia 2003: 865-871.
Brown, G.P., Shine, R. (2007): Rain, prey and predators: climatically driven shifts in frog abundance modify reproductive allometry in a tropical snake. Oecologia 154: 361-368.
Chamorro, D., Martínez-Freiría, F., Real, R., Muñoz, A.R. (2021): Understanding parapatry: how do environment and competitive interactions shape Iberian vipers’ distributions?. Journal of Biogeography 48: 1322-1335.
Diego-Rasilla, F.J. (2015): Lagartija roquera – Podarcis muralis. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A., Eds, Museo Nacional de Ciencias Naturales, Madrid.
ESRI (2016): ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, Redlands, USA.
Fick, S.E., Hijmans, R.J. (2017): WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315.
Ford, N.B., Hampton, P.M. (2009): Ontogenetic and sexual differences in diet in an actively foraging snake, Thamnophis proximus. Canadian Journal of Zoology 87: 254-261.
Forsman, A., Lindell, L.E. (1993): The advantage of a big head: swallowing performance in adders, Vipera berus. Functional Ecology 7: 183.
Freitas, I., Ursenbacher, S., Mebert, K., Zinenko, O., Schweiger, S., Wüster, W., et al. (2020): Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). Amphibia-Reptilia 41: 285-311.
Galán, P. (1988): Segregación ecológica en una comunidad de ofidios. Doñana. Acta Vertebrata 15: 59-78.
Galán, P. (2015): Lagartija de Bocage – Podarcis bocagei. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A., Eds, Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/.
Glaudas, X., Glennon, K.L., Martins, M., Luiselli, L., Fearn, S., Trembath, D.F., Jelić, D., Alexander, G.J. (2019): Foraging mode, relative prey size and diet breadth: a phylogenetically explicit analysis of snake feeding ecology. Journal of Animal Ecology 88: 757-767.
Healy, K., Carbone, C., Jackson, A.L. (2019): Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure. Ecology letters 22: 527-537.
Horesh, S.J., Sivan, J., Rosenstrauch, A., Tesler, I., Degen, A.A., Kam, M. (2017): Seasonal biotic and abiotic factors affecting hunting strategy in free-living Saharan sand vipers, Cerastes vipera. Behav. Processes 135: 40-44.
Iglesias-Carrasco, M., Cabido, C., Ord, T.J. (2021): Natural toxins leached from Eucalyptus globulus plantations affect the development and life-history of anuran tadpoles. Freshwater Biol.
King, R.B. (2002): Predicted and observed maximum prey size – snake size allometry. Functional Ecology 16: 766-772.
Levins, R. (1968): Evolution in Changing Environments. Princeton University Press, Princeton.
Lucchini, N., Kaliontzopoulou, A., Val, G.A., Martínez-Freiría, F. (2020): Sources of intraspecific morphological variation in Vipera seoanei: allometry, sex, and colour phenotype. Amphibia-Reptilia 42: 1-16.
Luiselli, L. (1996): Food habits of an alpine population of the sand viper (Vipera ammodytes). J. Herpetol. 30 (1): 92-94.
Luiselli, L. (2006): Interspecific relationships between two species of sympatric Afrotropical water snake in relation to a seasonally fluctuating food resource. Journal of Tropical Ecology 22: 91-100.
Luiselli, L., Agrimi, U. (1991): Composition and variation of the diet of Vipera aspis francisciredi in relation to age and reproductive stage. Amphibia Reptilia 12: 137-144.
Luiselli, L., Filippi, E., Capula, M. (2005): Geographic variation in diet composition of the grass snake (Natrix natrix) along the mainland and an island of Italy: the effects of habitat type and interference with potential competitors. The Herpetological Journal 15: 221-230.
Luque-Larena, J.J., Mougeot, F., Vinuela, J., Jareno, D., Arroyo, L., Lambin, X., Arroyo, B. (2013): Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14: 432-441.
Lyons, K., Dugon, M.M., Healy, K. (2020): Diet breadth mediates the prey specificity of venom potency in snakes. Toxins 12: 74.
Martínez-Freiría, F. (2015): Assessing climate change vulnerability for the Iberian viper Vipera seoanei. Basic and Applied Herpetology 29: 61-80.
Martínez-Freiría, F., Brito, J.C. (2013): Integrating classical and spatial multivariate analyses for assessing morphological variability in the endemic Iberian viper Vipera seoanei. Journal of Zoological Systematics and Evolutionary Research 51: 122-131.
Martínez-Freiría, F., Brito, J.C. (2014): Vipera seoanei (Lataste, 1879). Fauna Ibérica 10: 942-957.
Martínez-Freiría, F., i de Lanuza, G.P., Pimenta, A.A., Pinto, T., Santos, X. (2017): Aposematism and crypsis are not enough to explain dorsal polymorphism in the Iberian adder. Acta Oecologica 85: 165-173.
Martínez-Freiría, F., Lizana, M., do Amaral, J.P., Brito, J.C. (2010): Spatial and temporal segregation allows coexistence in a hybrid zone among two Mediterranean vipers (Vipera aspis and V. latastei). Amphibia-Reptilia 31: 195-212.
Martínez-Freiría, F., Sillero, N., Lizana, M., Brito, J.C. (2008): GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Diversity and Distributions 14: 452-461.
Martínez-Freiría, F., Toyama, K.S., Freitas, I., Kaliontzopoulou, A. (2020): Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Scientific Reports 10: 1-10.
Martínez-Freiría, F., Velo-Antón, G., Brito, J.C. (2015): Trapped by climate: interglacial refuge and recent population expansion in the endemic Iberian adder Vipera seoanei. Diversity and Distributions 21: 331-344.
McFadden, D. (1974): Conditional logit analysis of qualitative choice behavior. In: Frontiers in Econometrics, p. 104-142. Zarembka, P., Ed., Academic Press, New York.
Meik, J.M., Setser, K., Mociño-Deloya, E., Lawing, A.M. (2012): Sexual differences in head form and diet in a population of Mexican lance-headed rattlesnakes, Crotalus polystictus. Biological Journal of the Linnean Society 106: 633-640.
Mira, A., Marques, C.C., Santos, S.M., Rosário, I.T., Mathias, M.L. (2008): Environmental determinants of the distribution of the Cabrera vole (Microtus cabrerae) in Portugal: implications for conservation. Mammalian Biology 73: 102-110.
Mizsei, E., Boros, Z., Lovas-Kiss, Á., Szepesváry, C., Szabolcs, M., Rák, G., Ujszegi, J., Gál, Z., Lengyel, S., Puskás, G. (2019): A trait-based framework for understanding predator-prey relationships: trait matching between a specialist snake and its insect prey. Functional Ecology 33: 2354-2368.
Moon, B.R., Penning, D.A., Segall, M., Herrel, A. (2019): Feeding in snakes: form, function, and evolution of the feeding system. In: Feeding Vertebrates, Fascinating Life Sciences, p. 527-574. Bels, V., Whishaw, I.Q., Eds, Springer, Cham.
Mushinsky, H.R. (1987): Foraging ecology. In: Snakes: Ecology and Evolutionary Biology, p. 302-334. Seigel, R.A., Collins, J.T., Novak, S.S., Eds, McMillan, New York.
Naulleau, G., Bonnet, X. (1996): Body condition threshold for breeding in a viviparous snake. Oecologia 107: 301-306.
Palomo, L.J., Gisbert, J., Blanco, J.C., Eds (2002): Atlas de los Mamíferos Terrestres de España. Madrid: Dirección General de Conservación de la Naturaleza – SECEM – SECEMU, Madrid, España.
Peng, C.Y.J., Lee, K.L., Ingersoll, G.M. (2002): An introduction to logistic regression analysis and reporting. The Journal of Educational Research 96: 3-14.
Phelps, T. (2010): Old World Vipers: a Natural History of the Azemiopinae and Viperinae. Edition Chimaira.
Pianka, E.R. (1973): The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53-74.
Prestt, I. (1971): An ecological study of the viper Vipera berus in southern Britain. Journal of Zoology 164: 373-418.
R Core Team (2021): R: A language and environment for statistical computing (R Version 4.0.3, R Foundation for Statistical Computing, Vienna, Austria).
Rodríguez, C., Peris, S. (2007): Habitat associations of small mammals in farmed landscapes: implications for agri-environmental schemes. Animal Biology 57: 301-314.
Saint Girons, H. (1979): Les cycles alimentaires des Vipères européennes dans des conditions semi-naturelles. Ann. Biol. Anim., Biochim. Biophys. 19: 125-134.
Saint Girons, H. (1980): Selective modifications in the diet of vipers (Reptilia: Viperidae) during growth. Amphibia-Reptilia 1: 127-136.
Saint Girons, H. (1981): Cycle annuel et survie de quelques vipères d’Europe. Influence des températures exceptionnellement élevées de l’année 1976. Vie Milieu 31: 59-64.
Salvador, A. (2015): Rana patilarga – Rana iberica. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Martínez Solano, I., Eds, Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/.
Salvador, A., Pleguezuelos, J.M., Reques, R. (2021): Guía de los anfibios y reptiles de España. Sociedad Herpetológica Española, Museo Nacional de Ciencias Naturales (MNCN), Madrid, 345 pp.
Santos, X., Llorente, G., Pleguezuelos, J., Brito, J., Fahd, S., Parellada, X. (2007): Variation in the diet of the Lataste’s viper Vipera latastei in the Iberian Peninsula: seasonal, sexual and size-related effects. Animal Biology 57: 49-61.
Santos, X., Pleguezuelos, J.M., Brito, J.C., Llorente, G.A., Parellada, X., Fahd, S. (2008): Prey availability drives geographic dietary differences of a Mediterranean predator, the Lataste’s viper (Vipera latastei). The Herpetological Journal 18: 16-22.
Sanz, B., Turón, J.V. (2018): Guía de mamíferos terrestres. Península Ibérica y Baleares. Ediciones Prames, Zaragoza, 303 pp.
Shine, R. (1991): Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. American Naturalist 138: 103-122.
Shine, R. (1993): Sexual dimorphism in snakes. In: Snakes, Ecology and Behavior, p. 49-86.
Shine, R., Branch, W.R., Webb, J.K., Harlow, P.S., Shine, T. (2006): Sexual dimorphism, reproductive biology, and dietary habits of psammophiine snakes (Colubridae) from southern Africa. Copeia 2006: 650-664.
Sillero, N., Brito, J.C., Skidmore, A.K., Toxopeus, A.G. (2009): Biogeographical patterns derived from remote sensing variables: the amphibians and reptiles of the Iberian Peninsula. Amphibia-Reptilia 30: 185-206.
Teerink, B.J. (1991): Hair of West-European Mammals. Cambridge University Press, Cambridge.
Velo-Antón, G., Buckley, D. (2015): Salamandra común – Salamandra salamandra. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Martínez-Solano, I., Eds, Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/.
Wasko, D.K., Sasa, M. (2012): Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study. Zoology 115: 179-187.
Zuffi, M.A., Giudici, F., Ioalè, P. (1999): Frequency and effort of reproduction in female Vipera aspis from a southern population. Acta Oecologica 20: 633-638.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 975 | 223 | 11 |
Full Text Views | 40 | 4 | 1 |
PDF Views & Downloads | 70 | 15 | 3 |
Numerous dietary studies have shown that European vipers (genus Vipera) present low feeding frequency and a specialist diet, which is characterised by a marked ontogenetic shift. However, how eco-geographic factors shape species’ feeding ecology remains scarcely addressed. We investigated the feeding ecology of the Iberian adder, Vipera seoanei, examining 402 specimens distributed across its distributional range and addressing how biological, temporal and eco-geographic factors relate to the species feeding activity and dietary consumption. Our results indicated a low feeding frequency in the species, higher in juveniles than in adults. Adult females showed higher rates of prey consumption than adult males, which match to the distinct reproductive demands of both sexes, although no differences between reproductive and non-reproductive females were found. V. seoanei preyed on a varied taxa spectrum, but showed a rather specialist diet based on small mammals. Amphibians and reptiles were also an important part of its diet, particularly in the juveniles. Body size was found as the single biological trait related to the consumption of major prey groups, supporting the occurrence of an ontogenetic shift in the diet. Two habitat and two climatic factors correlated to the consumption of major prey groups, reflecting the ecological requirements of prey across the viper’s range. Overall, this study extends the existing knowledge on the feeding ecology of European vipers, signalling how energy intake and allometric constraints shape the feeding activity and dietary consumption of the species across the geography, leading to distinct feeding strategies in juveniles and adults.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 975 | 223 | 11 |
Full Text Views | 40 | 4 | 1 |
PDF Views & Downloads | 70 | 15 | 3 |