The genus Eunectes Wagler, 1830 is divided into four nominal species: E. murinus (Linnaeus, 1758), E. notaeus Cope, 1862, E. deschauenseei Dunn and Conant, 1936, and E. beniensis Dirksen, 2002 (E. barbouri Dunn and Conant, 1936 being a synonym of E. murinus). We analyze multivariate morphological traits (scalation, coloration pattern, and body shape), sequences of one mitochondrial and five nuclear genes, and genetic patterns of randomly amplified DNA (RAPD) markers of historical geographical samples representing all known taxa. We show that the genus consists of two distinct evolutionary lineages, ‘big-bodied’ (only E. murinus) and ‘small-bodied’ anacondas. The latter group includes three morphologically distinct allopatric forms, E. notaeus, E. deschauenseei, and E. beniensis. Both phenotypically and genotypically, E. beniensis is more distant from E. notaeus and E. deschauenseei than the two latter species are from each other. However, the three nominal species of small-bodied anacondas did not show clear reciprocal monophyly and did not reach the stage of complete lineage sorting. Instead, genetic data support the presence of three incipient species of small-bodied anacondas.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Avise, J.C. (1990): Principles of genealogical concordance in species concepts and biological taxonomy. Oxford surveys in evolutionary biology 7: 45-67.
Avise, J.C. (2000): Phylogeography – the History and Formation of Species. Harvard Univ. Press, Cambridge, MA.
Bandelt, H.J., Forster, P., Röhl, A. (1999): Median-joining networks for inferring intraspecific phylogenies. Biol. Evol. 16: 37-48.
Besnier, F., Glover, K.A. (2013): Parallel structure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLOS One 8 (7): e70651. DOI:10.1371/journal.pone.0070651.
Brito, P.H., Edwards, S.V. (2009): Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135: 439-455.
Burbrink, F.T., Lawson, R., Slowinski, J.B. (2000): Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54: 2107-2118.
Burnham, R.J., Graham, A. (1999): The history of Neotropical vegetation: new developments and status. Ann. Missouri Bot. Garden: 546-589.
Caetano-Anollés, G., Gresshoff, P.M. (1997): DNA Markers: Protocols, Applications and Overviews. Wiley and Sons, USA.
Camera, B., Stüssmann, C., Quintana, I., Waller, T., Barros, M., Draque, J., Mucucci, P., Miranda, E. (2020): Assessing the sustainability of yellow anaconda (Eunectes notaeus) harvest in northeastern Argentina. DOI:10.21203/rs.3.rs-109402/v1.
Cheng, H., Sinha, A., Cruz, FW., Wang, X., Edwards, R.L., d’Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S. (2013): Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4: 1-6.
De la Quintana, P., Rivas, J.A., Valdivia, F., Pacheco, L.F. (2017): Home range and habitat use of Beni anacondas (Eunectes beniensis) in Bolivia. Amphibia-Reptilia 38: 547-553.
De Queiroz, K. (2007): Species concepts and species delimitation. Syst. Biol. 56: 879-886.
Dirksen, L., Böhme, W. (1998a): Studien an Anacondas 1: Indizien für natürliche Bastardierung zwischen der Großen Anaconda Eunectes murinus und der Paraguay Anaconda Eunectes notaeus in Bolivien, mit Anmerkungen zur Taxonomie der Gattung Eunectes. Zool. Abh. Mus. Tierkd. Dresden 4: 45-58.
Dirksen, L., Böhme, W. (1998b): Studien an Anacondas 2: Zum taxonomischen Status von Eunectes murinus gigas (Latreille, 1801) (Serpentes: Boidae), mit neuen Ergebnissen zur Gattung Eunectes Wagler, 1830. Salamandra 34: 359-374.
Dirksen, L. (2002): Anakondas. Monographische Revision der Gattung Eunectes (Wagler, 1830) (in German). Natur und Tier-Verlag, Münster. ISBN 3-931587-43-6.
Dirksen, L., Böhme, W. (2005): Studies on Anacondas. III. A Reappraisal of Eunectes beniensis Dirksen, 2002, from Bolivia, and a Key to the Species of the Genus Eunectes Wagler, 1830 (Serpentes: Boidae). Russian J. Herpetol. 12: 223-229.
Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A. (2012): Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29: 1969-1973. pmid:22367748.
Dunn, E.R., Conant, R. (1936): Notes on anacondas, with descriptions of two species. Proc. Acad. Nat. Sci. 88: 503-506.
Evanno, G., Regnaut, S., Goudet, J. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.
Falush, D., Stephens, M., Pritchard, J.K. (2007): Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7: 574-578.
Francis, R.M. (2017): POPHELPER: an R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17: 27-32. DOI:10.1111/1755-0998.12509.
Freitas, I., Ursenbacher, S., Mebert, K., Zinenko, O., Schweiger, S., Wüster, W., Brito, J.C., Crnobrnja-Isailović, J., Halpern, B., Fahd, S., Santos, X., Pleguezuelos, J.M., Joger, U., Orlov, N., Mizsei, E., Lourdais, O., Zuffi, M.A.L., Strugariu, A., Zamfirescu, S.R., Martínez-Solano, I., Velo-Antón, G., Kaliontzopoulou, A., Martínez-Freiría, F. (2020): Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). Amphibia-Reptilia 41: 285-311.
Gustincich, S., Manfioletti, C., Del Sal, G., Schneider, C., Carninci, P. (1991): A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11: 298-302.
Häggi, C., Chiessi, C.M., Merkel, U., Mulitza, S., Prange, M., Schulz, M., Schefuß, E. (2017): Response of the Amazon rainforest to late Pleistocene climate variability. Earth Planet. Sci. Lett. 479: 50-59.
Hille, A., Liebal, K., Mosch, B., Pellmann, H., Schlegel, M. (2003): An RAPD (random amplified polymorphic DNA) analysis of genetic population structure of Balea biplicata (Gastropoda: Clausiliidae) in fragmented floodplain forests of the elster/saale riparian system. Biochem. Genet. 41: 175-199.
Hsiou, A.S., Albino, A.M. (2009): Presence of the genus Eunectes (Serpentes, Boidae) in the Neogene of southwestern Amazonia, Brazil. J. Herpetol. 43: 612-619.
IBM Corp. Released (2017): IBM SPSS Statistics for Windows, Version 25.0. IBM Corp, Armonk, NY.
Jackson, J.E. (1991): A User’s Guide to Principal Components. John Wiley and Sons, New Jersey.
Kershaw, F., Waller, T., Micucci, P., Draque, J., Barros, M., Buongermini, E., Pearson, R.G., Mendez, M. (2013): Informing conservation units: barriers to dispersal for the yellow anaconda. Divers. Distrib. 19: 1164-1174.
Kronforst, M.R. (2008): Gene flow persists millions of years after speciation in Heliconius butterflies. BMC Evol. Biol. 8: 1-8.
Kumar, S., Stecher, G., Suleski, M., Hedges, S.B. (2017): TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812-1819. DOI:10.1093/molbev/msx116.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018): MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
Leviton, A.E., Gibbs, R.H., Heal, E., Dawson, C.E. (1985): Standards in herpetology and ichthyology: part 1. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia 1985 (5): 802-832.
Manly, B.F.J. (1996): Multivariate Statistical Methods. A Primer, 2nd Edition. Chapman and Hall, London.
Mayr, E. (1969): Principles of Systematic Zoology. McGraw Hill, NY.
McCartney-Melstad, E., Waller, T., Micucci, P.A., Barros, M., Draque, J., Amato, G., Mendez, M. (2012): Population structure and gene flow of the yellow anaconda (Eunectes notaeus) in northern Argentina. PLOS One 7 (5): e37473. DOI:10.1371/journal.pone.0037473.
Mendez, M.A., Waller, T.O., Micucci, P.A., Alvarenga, E.R., Morales, J.C. (2007): Genetic population structure of the yellow anaconda (Eunectes notaeus) in northern Argentina: management implications. In: Biology of Boas and Pythons, pp. 405-414. Henderson, R.W., Powell, R., Eds, Eagle Mountain Publishing, LC, Utah.
Miller, K.G., Fairbanks, R.G. (1983): Evidence for Oligocene – middle Miocene abyssal circulation changes in the western north Atlantic. Nature 306: 250-253.
Murtskhvaladze, M., Tarkhnishvili, D., Anderson, C.L., Kotorashvili, A. (2020): Phylogeny of Caucasian rock lizards (Darevskia) and other true lizards based on mitogenome analysis: optimisation of the algorithms and gene selection. PLOS One 15 (6): e0233680.
Pizzatto, L., Marques, O.A.V., Martins, M. (2007): Ecomorphology of boine snakes, with emphasis on South American forms. In: Biology of Boas and Pythons, pp. 35-48. Henderson, R.W., Powell, R., Eds, Eagle Mountain Publishing, LC, Utah.
Pritchard, J.K., Stephens, M., Donnelly, P. (2000): Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
Pyron, R.A., Burbrink, F.T., Wiens, J.J. (2013): A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13: 1-54.
Pyron, R.A., Reynolds, R.G., Burbrink, F.T. (2014): Taxonomic revision of boas (Serpentes: Boidae). Zootaxa 3846: 249-260.
R Development Core Team (2017): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
Reynolds, R.G. (2011): Islands, metapopulations, and archipelagos – genetic equilibrium and non-equilibrium dynamics of structured populations in the context of conservation. Dissertation, University of Tennessee, Knoxville.
Reynolds, R.G., Niemiller, M.L., Revell, L.J. (2014): Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogenet. Evol. 71: 201-213.
Rosenberg, N.A., Mahajan, S., Ramachandran, S., Zhao, C., Pritchard, J.K., et al. (2005): Clines, clusters, and the effect of study design on the inference of human population structure. PLOS Genetics 1 (6): e70.
Saint, K.M., Austin, C.C., Donnellan, S.C., Hutchinson, M.N. (1998): C-mos, a nuclear marker useful for squamate phylogenetic analysis. Mol. Phylogenet. Evol. 10: 259-263.
Sambrook, J., Fritsch, E.F., Maniatis, T. (1989): Molecular Cloning. A Laboratory Manual, 2nd Edition. Cold Spring Harbor Laboratory Press, NY.
Shibata, H., Sakata, S., Hirano, Y., Nitasaka, E., Sakabe, A. (2017): Facultative parthenogenesis validated by DNA analyses in the green anaconda (Eunectes murinus). PLOS One 12: e0189654.
Smaniotto, N.P., Moreira, L.F., Rivas, J.A., Strüssmann, C. (2020): Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56: 159-167.
Sokal, R.R., Rohlf, F.J. (1987): Biostatistics. Francise & Co, New York.
Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martínez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Vörös, J., Crochet, P.A. (2020): Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41: 139-189.
Stamatakis, A. (2014): RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
Stimson, A.F. (1969): Liste der rezenten Amphibien und Reptilien. Boidae (Boinae + Bolyeriinae + Loxoceminae + Pythoninae). Das Tierreich 89: I-XI + 1-49.
Strimple, P.D., Puorto, G., Holmstrom, W.F., Henderson, R.W., Conant, R. (1997): On the status of the anaconda Eunectes barbouri Dunn and Conant. J. Herpetol. 31: 607-609.
Thorpe, R.S., Leamy, L. (1983): Morphometric studies in inbreed and hybrid house mice (Mus sp.): multivariate analysis of size and shape. J. Zool. 199: 421-432.
Tonini, J.F.R., Beard, K.H., Ferreira, R.B., Jetz, W., Pyron, R.A. (2016): Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204: 23-31.
Viana, P.F., Ezaz, T., Cioffi, M.D.B., Liehr, T., Al-Rikabi, A., Tavares-Pinheiro, R., Bertollo, L.A.C., Feldberg, E. (2020): Revisiting the karyotype evolution of Neotropical boid snakes: a puzzle mediated by chromosomal fissions. Cells 9: 2268. DOI:10.3390/cells9102268.
Wiley, E.O. (1978): The evolutionary species concept reconsidered. Syst. Zool. 27: 17-26.
Wright, A.M., Lyons, K.M., Brandley, M.C., Hillis, D.M. (2015): Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. J. Exp. Zool. Part B: Molecular and Developmental Evolution 324: 504-516.
Wüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Da Graca Salomao, M., Thorpe, R.S. (2005): Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14: 1095-1108.
Zachos, F.E. (2009): Gene trees and species trees – mutual influences and interdependences of population genetics and systematics. Journal of Zoological Syst. Evol. Res. 47: 209-218.
Zheng, Y., Wiens, J.J. (2016): Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94: 537-547.
Zhivotovsky, L. (1999): Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8: 907-913.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3275 | 1459 | 57 |
Full Text Views | 62 | 31 | 3 |
PDF Views & Downloads | 162 | 74 | 5 |
The genus Eunectes Wagler, 1830 is divided into four nominal species: E. murinus (Linnaeus, 1758), E. notaeus Cope, 1862, E. deschauenseei Dunn and Conant, 1936, and E. beniensis Dirksen, 2002 (E. barbouri Dunn and Conant, 1936 being a synonym of E. murinus). We analyze multivariate morphological traits (scalation, coloration pattern, and body shape), sequences of one mitochondrial and five nuclear genes, and genetic patterns of randomly amplified DNA (RAPD) markers of historical geographical samples representing all known taxa. We show that the genus consists of two distinct evolutionary lineages, ‘big-bodied’ (only E. murinus) and ‘small-bodied’ anacondas. The latter group includes three morphologically distinct allopatric forms, E. notaeus, E. deschauenseei, and E. beniensis. Both phenotypically and genotypically, E. beniensis is more distant from E. notaeus and E. deschauenseei than the two latter species are from each other. However, the three nominal species of small-bodied anacondas did not show clear reciprocal monophyly and did not reach the stage of complete lineage sorting. Instead, genetic data support the presence of three incipient species of small-bodied anacondas.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3275 | 1459 | 57 |
Full Text Views | 62 | 31 | 3 |
PDF Views & Downloads | 162 | 74 | 5 |