Ceramic powder characterization by multilayer perceptron (MLP) data compression and classification

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

A neural network approach for pattern classification has been explored in the present paper as part of the recent resurgence of interest in this area. Our research has focused on how a multilayer feedforward structure performs in the particular problem of particle characterization. The proposed procedure, after suitable data preprocessing, consists of two distinct phases: in the former, a feedforward neural network is used to obtain an image data compression. In the latter, a neural classifier is trained on the compressed data. All the tests have been conducted on a sample constituted by two different typologies of ceramic particles, each characterized by a different microstructure. The sample image of different particles acquired and directly digitalized by scanning electron microscopy has been processed in order to achieve the best conditions to obtain the boundary profile of each particle. The boundary is thus assumed to be representative of the morphological characteristics of the ceramic products. Using the neural approach, a classification accuracy as high as 100% on a training set of 80 sub-images was achieved. These networks correctly classified up to 96.9% of 64 testing patterns not contained in the training set.

Amphibia-Reptilia

Publication of the Societas Europaea Herpetologica

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 3
Full Text Views 0 0 0
PDF Downloads 0 0 0
EPUB Downloads 0 0 0