Event Segmentation and Biological Motion Perception in Watching Dance

in Art & Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


We used a combination of behavioral, computational vision and fMRI methods to examine human brain activity while viewing a 386 s video of a solo Bharatanatyam dance. A computational analysis provided us with a Motion Index (MI) quantifying the silhouette motion of the dancer throughout the dance. A behavioral analysis using 30 naïve observers provided us with the time points where observers were most likely to report event boundaries where one movement segment ended and another began. These behavioral and computational data were used to interpret the brain activity of a different set of 11 naïve observers who viewed the dance video while brain activity was measured using fMRI. Results showed that the Motion Index related to brain activity in a single cluster in the right Inferior Temporal Gyrus (ITG) in the vicinity of the Extrastriate Body Area (EBA). Perception of event boundaries in the video was related to the BA44 region of right Inferior Frontal Gyrus as well as extensive clusters of bilateral activity in the Inferior Occipital Gyrus which extended in the right hemisphere towards the posterior Superior Temporal Sulcus (pSTS).

Event Segmentation and Biological Motion Perception in Watching Dance

in Art & Perception



BartelsA.ZekiS. (2004). The chronoarchitecture of the human brain — Natural viewing conditions reveal a time-based anatomy of the brainNeuroimage 22419433.

BartelsA.ZekiS. (2005). The chronoarchitecture of the cerebral cortexPhil. Trans. R. Soc. B 360733750.

BlakeR.ShiffrarM. (2007). Perception of human motionAnnu. Rev. Psychol. 584773.

BlasingB.Calvo-MerinoB.CrossE. S.JolaC.HonischJ.StevensC. J. (2012). Neurocognitive control in dance perception and performanceActa Psychol. 139300308.

CadieuC. F.OlshausenB. A. (2012). Learning intermediate-level representations of form and motion from natural moviesNeural Comput. 24827866.

Calvo-MerinoB.GrezesJ.GlaserD. E.PassinghamR. E.HaggardP. (2006). Seeing or doing? Influence of visual and motor familiarity in action observationCurr. Biol. 1619051910.

CamurriA.De PoliG.LemanM.VolpeG. (2005). Toward communicating expressiveness and affect in multimodal interactive systems for performing art and cultural applicationsIEEE Multimedia Mag. 124353.

CamurriA.TroccaR.VolpeG. (2002). Interactive systems design: A KANSEI-based approach in: Proceedings of the 2002 Conference on New Interfaces for Musical Expression Limerick Ireland pp. 155–162.

ChristensenJ. F.Calvo-MerinoB. (2013). Dance as a subject for empirical aestheticsPsychol. Aesthet. Creat. 77688.

CrossE. S.HamiltonA. F. D. C.GraftonS. T. (2006). Building a motor simulation de novo: Observation of dance by dancersNeuroimage 3112571267.

deLahuntaS.BarnardP.Nimmo-SmithI.PottsJ.RamponiC. (2006). Densities of agreement: Making visible some intangible properties of danceDance Theatre J. 211723.

DowningP. E.PeelenM. V. (2011). The role of occipitotemporal body-selective regions in person perceptionCogn. Neurosci. 2186203.

DowningP. E.PeelenM. V.WiggettA. J.TewB. D. (2006). The role of the extrastriate body area in action perceptionSoc. Neurosci. 15262.

FenlonJ.DenmarkT.CampbellR.WollB. (2007). Seeing sentence boundariesSign. Lang. Linguist. 10177200.

FerriS.KolsterH.JastorffJ.OrbanG. A. (2013). The overlap of the EBA and the MT/V5 clusterNeuroimage 66412425.

FormanS. D.CohenJ. D.FitzgeraldM.EddyW. F.MintunM. A.NollD. C. (1995). Improved assessment of significant activation in functional magnetic-resonance-imaging (fMRI): Use of a cluster-size thresholdMagn. Reson. Med. 33636647.

GiblinP. J.PollickF. E.RycroftJ. E. (1994). Recovery of an unknown axis of rotation from the profiles of a rotating surfaceJ. Opt. Soc. Am. 1119761984.

GieseM. A.PoggioT. (2003). Neural mechanisms for the recognition of biological movementsNat. Rev. Neurosci. 4179192.

GlasserM. F.RillingJ. K. (2008). DTI Tractography of the human brain’s language pathwaysCereb. Cortex 1824712482.

GlowinskiD.CamurriA.ChiorriC.MazzarinoB.VolpeG. (2009). Validation of an algorithm for segmentation of full-body movement sequences by perception: A pilot experiment in: Gesture-Based Human-Computer Interaction and SimulationLecture Notes in Computer Science Vol. 5085Sales DiasM.GibetS.WanderleyM. M.BastosR. (Eds) pp.  239244. Springer-VerlagBerlin/Heidelberg, Germany.

GoebelR.EspositoF.FormisanoE. (2006). Analysis of Functional Image Analysis Contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysisHum. Brain Mapp. 27392401.

GrosbrasM. H.BeatonS.EickhoffS. B. (2012). Brain regions involved in human movement perception: A quantitative voxel-based meta-analysisHum. Brain Mapp. 33431454.

HassonU.NirY.LevyI.FuhrmannG.MalachR. (2004). Intersubject synchronization of cortical activity during natural visionScience 30316341640.

HejmadiA.DavidsonR. J.RozinP. (2000). Exploring Hindu Indian emotion expressions: Evidence for accurate recognition by Americans and IndiansPsychol. Sci. 11183187.

HickokG.PoeppelD. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of languageCognition 926799.

JastorffJ.OrbanG. A. (2009). Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processingJ. Neurosci. 2973157329.

JolaC.Abedian-AmiriA.KuppuswamyA.PollickF. E.GrosbrasM. H. (2012). Motor simulation without motor expertise: Enhanced corticospinal excitability in visually experienced dance spectatorsPLoS One 7e33343.

JolaC.GrosbrasM.-H. (2013). In the here and now: Enhanced motor corticospinal excitability in novices when watching live compared to video recorded danceCogn. Neurosci. 49098.

JolaC.McAleerPh.GrosbrasM.-H.LoveS. A.MorisonG.PollickF. E. (2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dancei-Perception 4265284.

KoechlinE.OdyC.KouneiherF. (2003). The architecture of cognitive control in the human prefrontal cortexScience 30211811185.

KoechlinE.SummerfieldC. (2007). An information theoretical approach to prefrontal executive functionTr. Cogn. Sci. 11229235.

KoenderinkJ. J. (1990). Solid Shape. MIT PressCambridge, MA, USA.

KoenderinkJ. J.Van DoornA. J. (1997). The generic bilinear calibration-estimation problemInt. J. Comput. Vis. 23217234.

LangeJ.LappeM. (2006). A model of biological motion perception from configural form cuesJ. Neurosci. 2628942906.

McAleerP.PollickF. E.LoveS. A.CrabbeF.ZacksJ. (in press). The role of kinematics in cortical regions for continuous human motion perceptionCogn. Affect. Behav. Neurosci. DOI:10.3758/s13415-013-0192-4

McKayL. S.SimmonsD. R.McAleerP.MarjoramD.PiggotJ.PollickF. E. (2012). Do distinct atypical cortical networks process biological motion information in adults with Autism Spectrum Disorders? Neuroimage 5915241533.

MeyerM.AlterK.FriedericiA. D.LohmannG.von CramonD. Y. (2002). FMRI reveals brain regions mediating slow prosodic modulations in spoken sentencesHum. Brain Mapp. 177388.

MunhallK. G.JonesJ. A.CallanD. E.KuratateT.Vatikiotis-BatesonE. (2004). Visual prosody and speech intelligibility: Head movement improves auditory speech perceptionPsychol. Sci. 15133137.

PeelenM. V.WiggettA. J.DowningP. E. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motionNeuron 49815822.

PollickF. E. (1994). Perceiving shape from profilesPercept. Psychophys. 55152161.

ReynoldsD.JolaC.PollickF. E. (2011). Dance Research Electronic — Introduction: Dance and neuroscience — new partnershipsDance Res. 29260269.

RizzolattiG.Fabbri-DestroM. (2008). The mirror system and its role in social cognitionCurr. Opin. Neurobiol. 18179184.

SpeerN. K.SwallowK. M.ZacksJ. M. (2003). Activation of human motion processing areas during event perceptionCogn. Affect. Behav. Neurosci. 3335345.

ThompsonJ. C.BaccusW. (2012). Form and motion make independent contributions to the response to biological motion in occipitotemporal cortexNeuroimage 59625634.

ToiviainenP.LuckG.ThompsonM. (2010). Embodied meter: Hierarchical eigenmodes in music-induced movementMusic Percept. 285970.

TomasiC.KanadeT. (1992). Shape and motion from image streams under orthography: A factorization methodInt. J. Comput. Vis. 9137154.

VangeneugdenJ.PollickF.VogelsR. (2009). Functional differentiation of macaque visual temporal cortical neurons using a parametric action spaceCereb. Cortex 19593611.

VolpeG.CamurriA. (2011). A system for embodied social active listening to sound and music contentACM J. Comput. Cult. Herit. 4223.

ZacksJ. M. (2004). Using movement and intentions to understand simple eventsCogn. Sci. 289791008.

ZacksJ. M.BraverT. S.SheridanM. A.DonaldsonD. I.SnyderA. Z.Ollinge BucknerJ. M.RaichleM. E. (2001). Human brain activity time-locked to perceptual event boundariesNat. Neurosci. 4651655.

ZacksJ. M.SwallowK. M.VettelJ. M.McAvoyM. P. (2006). Visual motion and the neural correlates of event perceptionBrain Res. 1076150162.

ZacksJ. M.TverskyB. (2001). Event structure in perception and cognitionPsychol. Bull. 127321.


  • View in gallery

    (A) The z-score transformation of the Motion Index of the dancer for the time course of the entire dance. Each plot point represents the average motion index averaged over 2 s. Note, that the extreme negative z-scores correspond to the dancer at the start and end when the Motion Index was near zero. (B) A histogram of button press frequencies for the 30 participants asked to identify segment boundaries. The bin width is 2 s and the dashed line shows the threshold of 1 standard deviation used as a criterion to define a boundary. Comparison of panels A and B reveals that a fraction of the event boundaries are aligned with peaks or troughs of the Motion Index.

  • View in gallery

    The results of the brain imaging experiment. Panel A shows the inferior temporal gyrus brain area that was found to covary with the motion index of the dancer. Panel B shows bilateral brain areas in the inferior occipital gyrus, which were activated at the times of event boundaries. Panel C shows the inferior frontal gyrus brain area that was also activated at the times of event boundaries. R: right, L: left, A: anterior, P: posterior.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 47 47 19
Full Text Views 95 95 77
PDF Downloads 6 6 3
EPUB Downloads 3 3 0