We used a combination of behavioral, computational vision and fMRI methods to examine human brain activity while viewing a 386 s video of a solo Bharatanatyam dance. A computational analysis provided us with a Motion Index (MI) quantifying the silhouette motion of the dancer throughout the dance. A behavioral analysis using 30 naïve observers provided us with the time points where observers were most likely to report event boundaries where one movement segment ended and another began. These behavioral and computational data were used to interpret the brain activity of a different set of 11 naïve observers who viewed the dance video while brain activity was measured using fMRI. Results showed that the Motion Index related to brain activity in a single cluster in the right Inferior Temporal Gyrus (ITG) in the vicinity of the Extrastriate Body Area (EBA). Perception of event boundaries in the video was related to the BA44 region of right Inferior Frontal Gyrus as well as extensive clusters of bilateral activity in the Inferior Occipital Gyrus which extended in the right hemisphere towards the posterior Superior Temporal Sulcus (pSTS).
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Bartels A., Zeki S. (2004). The chronoarchitecture of the human brain — Natural viewing conditions reveal a time-based anatomy of the brain, Neuroimage 22, 419–433.
Bartels A., Zeki S. (2005). The chronoarchitecture of the cerebral cortex, Phil. Trans. R. Soc. B 360, 733–750.
Blake R., Shiffrar M. (2007). Perception of human motion, Annu. Rev. Psychol. 58, 47–73.
Blasing B., Calvo-Merino B., Cross E. S., Jola C., Honisch J., Stevens C. J. (2012). Neurocognitive control in dance perception and performance, Acta Psychol. 139, 300–308.
Cadieu C. F., Olshausen B. A. (2012). Learning intermediate-level representations of form and motion from natural movies, Neural Comput. 24, 827–866.
Calvo-Merino B., Grezes J., Glaser D. E., Passingham R. E., Haggard P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation, Curr. Biol. 16, 1905–1910.
Camurri A., De Poli G., Leman M., Volpe G. (2005). Toward communicating expressiveness and affect in multimodal interactive systems for performing art and cultural applications, IEEE Multimedia Mag. 12, 43–53.
Camurri A., Trocca R., Volpe G. (2002). Interactive systems design: A KANSEI-based approach, in: Proceedings of the 2002 Conference on New Interfaces for Musical Expression, Limerick, Ireland, pp. 155–162.
Christensen J. F., Calvo-Merino B. (2013). Dance as a subject for empirical aesthetics, Psychol. Aesthet. Creat. 7, 76–88.
Cross E. S., Hamilton A. F. D. C., Grafton S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers, Neuroimage 31, 1257–1267.
deLahunta S., Barnard P., Nimmo-Smith I., Potts J., Ramponi C. (2006). Densities of agreement: Making visible some intangible properties of dance, Dance Theatre J. 21, 17–23.
Downing P. E., Peelen M. V. (2011). The role of occipitotemporal body-selective regions in person perception, Cogn. Neurosci. 2, 186–203.
Downing P. E., Peelen M. V., Wiggett A. J., Tew B. D. (2006). The role of the extrastriate body area in action perception, Soc. Neurosci. 1, 52–62.
Fenlon J., Denmark T., Campbell R., Woll B. (2007). Seeing sentence boundaries, Sign. Lang. Linguist. 10, 177–200.
Ferri S., Kolster H., Jastorff J., Orban G. A. (2013). The overlap of the EBA and the MT/V5 cluster, Neuroimage 66, 412–425.
Forman S. D., Cohen J. D., Fitzgerald M., Eddy W. F., Mintun M. A., Noll D. C. (1995). Improved assessment of significant activation in functional magnetic-resonance-imaging (fMRI): Use of a cluster-size threshold, Magn. Reson. Med. 33, 636–647.
Giblin P. J., Pollick F. E., Rycroft J. E. (1994). Recovery of an unknown axis of rotation from the profiles of a rotating surface, J. Opt. Soc. Am. 11, 1976–1984.
Giese M. A., Poggio T. (2003). Neural mechanisms for the recognition of biological movements, Nat. Rev. Neurosci. 4, 179–192.
Glasser M. F., Rilling J. K. (2008). DTI Tractography of the human brain’s language pathways, Cereb. Cortex 18, 2471–2482.
Glowinski D., Camurri A., Chiorri C., Mazzarino B., Volpe G. (2009). Validation of an algorithm for segmentation of full-body movement sequences by perception: A pilot experiment, in: Gesture-Based Human-Computer Interaction and Simulation, Lecture Notes in Computer Science, Vol. 5085, Sales Dias M., Gibet S., Wanderley M. M., Bastos R. (Eds), pp. 239–244. Springer-Verlag, Berlin/Heidelberg, Germany.
Goebel R., Esposito F., Formisano E. (2006). Analysis of Functional Image Analysis Contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis, Hum. Brain Mapp. 27, 392–401.
Grosbras M. H., Beaton S., Eickhoff S. B. (2012). Brain regions involved in human movement perception: A quantitative voxel-based meta-analysis, Hum. Brain Mapp. 33, 431–454.
Hasson U., Nir Y., Levy I., Fuhrmann G., Malach R. (2004). Intersubject synchronization of cortical activity during natural vision, Science 303, 1634–1640.
Hejmadi A., Davidson R. J., Rozin P. (2000). Exploring Hindu Indian emotion expressions: Evidence for accurate recognition by Americans and Indians, Psychol. Sci. 11, 183–187.
Hickok G., Poeppel D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language, Cognition 92, 67–99.
Jastorff J., Orban G. A. (2009). Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing, J. Neurosci. 29, 7315–7329.
Jola C., Abedian-Amiri A., Kuppuswamy A., Pollick F. E., Grosbras M. H. (2012). Motor simulation without motor expertise: Enhanced corticospinal excitability in visually experienced dance spectators, PLoS One 7, e33343.
Jola C., Grosbras M.-H. (2013). In the here and now: Enhanced motor corticospinal excitability in novices when watching live compared to video recorded dance, Cogn. Neurosci. 4, 90–98.
Jola C., McAleer Ph., Grosbras M.-H., Love S. A., Morison G., Pollick F. E. (2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance, i-Perception 4, 265–284.
Koechlin E., Ody C., Kouneiher F. (2003). The architecture of cognitive control in the human prefrontal cortex, Science 302, 1181–1185.
Koechlin E., Summerfield C. (2007). An information theoretical approach to prefrontal executive function, Tr. Cogn. Sci. 11, 229–235.
Koenderink J. J. (1990). Solid Shape. MIT Press, Cambridge, MA, USA.
Koenderink J. J., Van Doorn A. J. (1997). The generic bilinear calibration-estimation problem, Int. J. Comput. Vis. 23, 217–234.
Lange J., Lappe M. (2006). A model of biological motion perception from configural form cues, J. Neurosci. 26, 2894–2906.
McAleer P., Pollick F. E., Love S. A., Crabbe F. & Zacks J. (in press). The role of kinematics in cortical regions for continuous human motion perception, Cogn. Affect. Behav. Neurosci. DOI:10.3758/s13415-013-0192-4
McKay L. S., Simmons D. R., McAleer P., Marjoram D., Piggot J., Pollick F. E. (2012). Do distinct atypical cortical networks process biological motion information in adults with Autism Spectrum Disorders? Neuroimage 59, 1524–1533.
Meyer M., Alter K., Friederici A. D., Lohmann G., von Cramon D. Y. (2002). FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences, Hum. Brain Mapp. 17, 73–88.
Munhall K. G., Jones J. A., Callan D. E., Kuratate T., Vatikiotis-Bateson E. (2004). Visual prosody and speech intelligibility: Head movement improves auditory speech perception, Psychol. Sci. 15, 133–137.
Peelen M. V., Wiggett A. J., Downing P. E. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion, Neuron 49, 815–822.
Pollick F. E. (1994). Perceiving shape from profiles, Percept. Psychophys. 55, 152–161.
Reynolds D., Jola C., Pollick F. E. (2011). Dance Research Electronic — Introduction: Dance and neuroscience — new partnerships, Dance Res. 29, 260–269.
Rizzolatti G., Fabbri-Destro M. (2008). The mirror system and its role in social cognition, Curr. Opin. Neurobiol. 18, 179–184.
Speer N. K., Swallow K. M., Zacks J. M. (2003). Activation of human motion processing areas during event perception, Cogn. Affect. Behav. Neurosci. 3, 335–345.
Thompson J. C., Baccus W. (2012). Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex, Neuroimage 59, 625–634.
Toiviainen P., Luck G., Thompson M. (2010). Embodied meter: Hierarchical eigenmodes in music-induced movement, Music Percept. 28, 59–70.
Tomasi C., Kanade T. (1992). Shape and motion from image streams under orthography: A factorization method, Int. J. Comput. Vis. 9, 137–154.
Vangeneugden J., Pollick F., Vogels R. (2009). Functional differentiation of macaque visual temporal cortical neurons using a parametric action space, Cereb. Cortex 19, 593–611.
Volpe G., Camurri A. (2011). A system for embodied social active listening to sound and music content, ACM J. Comput. Cult. Herit. 4, 2–23.
Zacks J. M. (2004). Using movement and intentions to understand simple events, Cogn. Sci. 28, 979–1008.
Zacks J. M., Braver T. S., Sheridan M. A., Donaldson D. I., Snyder A. Z., Ollinge Buckner J. M., Raichle M. E. (2001). Human brain activity time-locked to perceptual event boundaries, Nat. Neurosci. 4, 651–655.
Zacks J. M., Swallow K. M., Vettel J. M., McAvoy M. P. (2006). Visual motion and the neural correlates of event perception, Brain Res. 1076, 150–162.
Zacks J. M., Tversky B. (2001). Event structure in perception and cognition, Psychol. Bull. 127, 3–21.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1035 | 148 | 11 |
Full Text Views | 348 | 7 | 1 |
PDF Views & Downloads | 124 | 16 | 2 |
We used a combination of behavioral, computational vision and fMRI methods to examine human brain activity while viewing a 386 s video of a solo Bharatanatyam dance. A computational analysis provided us with a Motion Index (MI) quantifying the silhouette motion of the dancer throughout the dance. A behavioral analysis using 30 naïve observers provided us with the time points where observers were most likely to report event boundaries where one movement segment ended and another began. These behavioral and computational data were used to interpret the brain activity of a different set of 11 naïve observers who viewed the dance video while brain activity was measured using fMRI. Results showed that the Motion Index related to brain activity in a single cluster in the right Inferior Temporal Gyrus (ITG) in the vicinity of the Extrastriate Body Area (EBA). Perception of event boundaries in the video was related to the BA44 region of right Inferior Frontal Gyrus as well as extensive clusters of bilateral activity in the Inferior Occipital Gyrus which extended in the right hemisphere towards the posterior Superior Temporal Sulcus (pSTS).
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1035 | 148 | 11 |
Full Text Views | 348 | 7 | 1 |
PDF Views & Downloads | 124 | 16 | 2 |