The Duality of Picture Perception and the Robustness of Perspective

in Art & Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Since the phenomenological analyses of picture perception by Edmund Husserl in the beginning of the last century, quite a few researchers have suggested emphatically that our perception of pictures has a dual nature. In short, when viewing a picture, the observer is aware of the picture as a flat object in perceived physical space and, simultaneously, of the pictorial space. Yet, despite a lot of phenomenological cogency, the concept of duality has had, at most, only a minor impact on vision science although it points to serious shortcomings of the common explanatory framework concerning picture perception and visual perception in general. In this article, a theoretical link between the duality of picture perception and the so-called robustness of perspective phenomenon is established and, extending an experimental design used by Vishwanath, Girshick, and Banks, resultant predictions empirically investigated. The results show empirical support for the dual nature of picture perception and pose a further challenge to theoretical accounts of both the robustness of perspective phenomenon and picture perception in general.

Sections

References

Allison R. S. and Howard I. P. (2000). Temporal dependencies in resolving monocular and binocular cue conflict in slant perception . Vis. Res. 40, 18691886.

Bennett M. R. and Hacker P. M. S. (2001). Perception and memory in neuroscience: A conceptual analysis . Progr. Neurobiol. 65, 499543.

Bennett M. R. and Hacker P. M. S. (2003). Philosophical Foundations of Neuroscience. Blackwell, Malden, MA, USA.

Bertamini M. , Martinovic J. and Wuerger S. M. (2008). Integration of ordinal and metric cues in depth processing . J. Vis. 8, 10. doi: 10.1167/8.2.10.

Burge J. , Peterson M. A. and Palmer S. E. (2005). Ordinal configural cues combine with metric disparity in depth perception . J. Vis. 5, 534542.

Busey T. A. , Brady N. P. and Cutting J. E. (1990). Compensation is unnecessary for the perception of faces in slanted pictures . Percept. Psychophys. 48, 111.

Cornsweet T. (1962). The staircase-method in psychophysics . Am. J. Psychol. 75, 485491.

Cutting J. E. (1988). Affine distortions of pictorial space: Some predictions for Goldstein (1987) that La Gournerie (1859) might have made . J. Exp. Psychol. Hum. Percept. Perform . 14, 305311.

DeLoache J. S. , Pierroutsakos S. L. , Uttal D. H. , Rosengren K. S. and Gottlieb A. (1998). Grasping the nature of pictures . Psychol. Sci. 9, 205210.

Goldstein E. B. (1987). Spatial layout, orientation relative to the observer, and perceived projection in pictures viewed at an angle . J. Exp. Psychol. Hum. Percept. Perform. 13, 256266.

Gårding J. (1992). Shape from texture for smooth curved surfaces in perspective projection , J. Math. Imaging Vis . 2, 329352.

Hacker P. M. S. (1991). Experimental methods and conceptual confusion: An investigation into R. L. Gregory’s theory of perception. Jerusalem Philos. Q . 40, 289314.

Hacker P. M. S. (1995). Helmholtz’s theory of perception: An investigation into its conceptual framework . Int. Stud. Philos. Sci. 9, 199214.

Hagen M. A. (1976). Influence of picture surface and station point on the ability to compensate for oblique view in pictorial perception , Dev. Psychol. 12, 5763.

Hillis J. M. , Watt S. J. , Landy M. S. and Banks M. S. (2004). Slant from texture and disparity cues: Optimal cue combination . J. Vis. 4, 967992.

Husserl E. (2006). Phantasie und Bildbewußtsein . Felix Meiner Verlag, Hamburg, Germany.

Ishihara S. (1998). The Series of Plates Designed as a Test for Colour-Deficiency. Kanehara, Tokyo, Japan.

Katz D. (1930). Der Aufbau der Farbwelt. Barth, Leipzig, Germany.

Kenny A. (1981). The homunculus fallacy, in: Interpretations of Life and Mind, Glicksman M. and Prigogine I. (Eds.), pp. 155165, Humanities Press, New York, NY, USA.

Knill D. C. (2007). Learning Bayesian priors for depth perception . J. Vis. 7, 120.

Koenderink J. J. , Van Doorn A. J. and Kappers A. M. L. (1994). On so-called paradoxical monocular stereoscopy. Perception 23, 583594.

Koenderink J. J. , Van Doorn A. J. and Kappers A. M. L. (1995). Depth relief. Perception 24, 115126.

Koenderink J. J. , Van Doorn A. J. , Kappers A. M. L. and Todd J. T. (2004). Pointing out of the picture. Perception, 33, 513530.

Kubovy M. (1986). The Psychology of Perspective and Renaissance Art. Cambridge University Press, New York, NY, USA.

Niederée R. and Heyer D. (2003). The dual nature of picture perception: A challenge to current general accounts of visual perception, in: Looking into Pictures. An Interdisciplinary Approach to Pictorial Space , Hecht H. , Schwartz R. and Atherton M. (Eds), pp. 7798, MIT Press,Cambridge, MA, USA.

Paskow A. (2004). The Paradoxes of Art. A Phenomenological Investigation, Cambridge University Press, New York, NY, USA.

Pepperell R. (2015). Artworks as dichotomous objects: Implications for the scientific study of aesthetic experience , Front. Hum. Neurosci. 9, 295. doi: 10.3389/fnhum.2015.00295.

Perkins D. N. (1973). Compensating for distortion in viewing pictures obliquely . Percept. Psychophys . 14, 1318.

Pierroutsakos S. L. and DeLoache J. S. (2003). Infants’ manual exploration of pictorial objects varying in realism. Infancy 4, 141156.

Pirenne M. H. (1970). Optics, Painting and Photography. Cambridge University Press, Cambridge, UK.

Polanyi M. (1970). What is a painting? Br. J. Aesthet. 10, 225236.

Richter J. P. (Ed. and Transl.). (1883). The Literary Works of Leonardo da Vinci. Retrieved from http://www.archive.org.

Rogers S. (1995). Perceiving pictorial space, in Perception of Space and Motion (2nd ed.), Epstein W. and Rogers S. (Eds), pp. 119164, Academic Press, San Diego, CA, USA.

Rosinski R. R. and Farber J. (1980). Compensating for viewing point in the perception of pictured space, in The Perception of Pictures , Hagen M. A. (Ed.), pp. 137176, Academic Press, New York, NY, USA.

Rosinski R. R. , Mulholland T. and Degelmann D. (1980). Picture perception: An analysis of visual compensation , Percept. Psychophys. 28, 521526.

Seydell A. , Knill D. C. and Trommershäuser J. (2010). Adapting internal statistical models for interpreting visual cues to depth , J. Vis. 10, 127.

Smit H. and Hacker P. M. S. (2014). Seven misconceptions about the mereological fallacy: A compilation for the perplexed. Erkenntnis 79, 10771097.

Todorović D. (2008). Is pictorial perception robust? The effect of the observer vantage point on the perceived depth structure of linear-perspective images, Perception, 37, 106125.

Troscianko T. , Montagnon R. , Le Clerk J. , Malbert E. and Chanteau P. L. (1991). The role of color as a monocular depth cue , Vis. Res. 31, 19231930.

Vishwanath D. , Girshick A. R. and Banks M. S. (2005). Why pictures look right when viewed from the wrong place. Nat, Neurosci. 8, 14011410.

Wagner M. (2006). The Geometries of Visual Space. Lawrence Erlbaum Associates, Mahwah, NJ, USA.

Wallach H. and Marshall F. J. (1986). Shape constancy in pictorial representation. Percept. Psychophys. 39, 233235.

Yang T. and Kubovy M. (1999). Weakening the robustness of perspective: Evidence for a modified theory of compensation in picture perception. Percept. Psychophys. 61, 456467.

Figures

  • Photography of Halle’s town square taken from the market church.

    View in gallery
  • Illustration from Dürer’s Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen Corporen.

    View in gallery
  • Illustration of the central projection of two spheres K 1 , K 2 onto a picture plane. Figure (b) shows the situation depicted in (a) in top view, Fig. (c) the two projections K′ 1, K′ 2 on the picture plane. See text for more details.

    View in gallery
  • Illustration of the projection of the image of a sphere onto the retina of a monocular observer.

    View in gallery
  • Schematic drawing of the viewing-box used in the experiment.

    View in gallery
  • Visual stimuli for the ‘non-canvas’ (top), and the ‘canvas condition’ (bottom) with aspect ratio τ = 1.

    View in gallery
  • Mean τ-estimates for participant SS under the ‘non-canvas’ (top) and ‘canvas condition’ (bottom). Error bars represent the SEM.

    View in gallery
  • Mean τ-estimates for participant FK under the ‘non-canvas’ (top) and ‘canvas condition’ (bottom). Error bars represent the SEM.

    View in gallery
  • Mean τ-estimates for participant SS under the binocular (a), monocular (b), and monocular through aperture (c) viewing condition. Error bars represent the SEM.

    View in gallery
  • Mean τ-estimates for participant FK under the binocular (a), monocular (b), and monocular through aperture (c) viewing condition. Error bars represent the SEM.

    View in gallery
  • Mean τ-estimates across all participants under the ‘non-canvas’ (top) and ‘canvas condition’ (bottom). Error bars represent the SEM.

    View in gallery
  • Mean τ-estimates across all participants under the binocular (a), monocular (b), and monocular through aperture (c) viewing condition. Error bars represent the SEM.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 32 32 8
Full Text Views 12 12 7
PDF Downloads 1 1 0
EPUB Downloads 3 3 3