The sea lamprey, Petromyzon marinus, exhibits a spectacular alarm response to the odor emitted from decayed conspecifics that may differ substantially in function from the well-characterized system in ostariophysan fishes. Here, we report a series of three laboratory experiments designed to characterize the behavioral responses of migratory-phase lampreys to a set of odors derived from conspecific and heterospecific tissues, determine whether sex or sexual maturation alters these responses, and ascertain if the putative alarm substance derives from a particular region of the body. A number of the findings were consistent with the prevailing predator-avoidance paradigm for fish alarm substances released from the skin after predator attack in that: (1) dilute odors derived from freshly ground skin were highly repellent; (2) the substance is contained in the organism early in life; (3) the odor derived from a close relative was avoided whereas those of a distant relative were not; and (4) upon sexual maturity female response to the alarm substance was attenuated. Two interesting patterns arose that differed substantially from the prevailing paradigm: (1) conspecific odors remained repellent after 96 h of aerobic decay; and (2) the cue was emitted from multiple areas of the body, not just the skin, and the repellency of the odor derived from any tissue increased in accordance with its mass. A persistent cue emitted from several sources suggests a broader ecological function than the detection and avoidance of a predator.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abrahams M.V. , Dill L.M. (1989). A determination of the energetic equivalence of the risk of predation. — Ecology 70: 999-1007.
Almeida P.R. , Quintella B.R. , Dias N.M. (2002). Movement of radio-tagged anadromous sea lamprey during the spawning migration in the River Mondego (Portugal). — Hydrobiologia 483: 1-8.
Applegate V.C. (1950). Natural history of the sea lamprey in Michigan. Wildlife Service Special Scientific Report. — Fisheries 55: 1-237.
Bednekoff P.A. (1996). Risk-sensitive foraging, fitness, and life histories: where does reproduction fit into the big picture? — Am. Zool. 36: 471-483.
Bergstedt R.A. , Seelye J.G. (1995). Evidence for a lack of homing by sea lamprey. — Trans. Am. Fish. Soc. 124: 235-239.
Blanchet S. , Bernatchez L. , Dodson J.J. (2007). Behavioural and growth responses of a territorial fish (Atlantic salmon, Salmo salar, L.) to multiple predatory cues. — Ethology 113: 1061-1072.
Bouwma P. , Hazlett B.A. (2001). Integration of multiple predator cues by the crayfish, Orconectes propinquus. — Anim. Behav. 61: 771-776.
Briones-Fourzán P. , Lozano-Álvarez E. (2008). Coexistence of congeneric spiny lobsters on coral reefs: differences in conspecific aggregation patterns and their potential antipredator benefits. — Coral Reefs 27: 275-287.
Brown G.E. , Rive A.C. , Ferrari M.C.O. , Chivers D.P. (2006). The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. — Behav. Ecol. Sociobiol. 61: 9-16.
Bryer P.J. , Mirza R.S. , Chivers D.P. (2001). Chemosensory assessment of predation risk by slimy sculpins (Cottus cognatus): responses to alarm, disturbance, and predator cues. — J. Chem. Ecol. 27: 533-546.
Carreau-Green N.D. , Mirza R.S. , Martínez M.L. , Pyle G.G. (2008). The ontogeny of chemically mediated antipredator responses of fathead minnows Pimephales promelas. — J. Fish Biol. 73: 2390-2401.
Chivers D.P. , Smith R.J.F. (1998). Chemical alarm signaling in aquatic predator–prey systems: a review and prospectus. — Ecoscience 5: 338-352.
Cochran P.A. , Leistein A.A. , Sneen M.E. (1992). Cases of predation and parasitism on lampreys in Wisconsin. — J. Freshw. Ecol. 7: 435-436.
Cochran P.A. , Lyons J. (2004). Field and laboratory observations on the ecology and behavior of the silver lamprey (Ichthyomyzon unicuspis) in Wisconsin. — J. Freshw. Ecol. 19: 245-253.
Dalesman S. , Rundle S.D. , Bilton D.T. , Cotton P.A. (2007). Phylogenetic relatedness and ecological interactions determine antipredator behavior. — Ecology 88: 2462-2467.
Døving K.B. , Lastein S. (2009). The alarm reaction in fishes: odorants, modulations of responses, neural pathways. — In: International symposium on olfaction and taste ( Finger T.E. , ed.). Wiley-Blackwell, Boston, MA, p. 413-423.
Døving K.B. , Westerberg H. , Johnsen P.B. (1985). Role of olfaction in the behavioral and neuronal responses of Atlantic salmon, Salmo salar, to hydrographic stratification. — Can. J. Fish. Aquat. Sci. 42: 1658-1667.
Downing S.W. , Novales R.R. (1971). The fine structures of lamprey epidermis II. Club cells. — J. Ultrastruct. Res. 35: 295-303.
Ferrari M.C.O. , Capitania-Kwok T. , Chivers D.P. (2006). The role of learning in the acquisition of threat-sensitive responses to predator odours. — Behav. Ecol. Sociobiol. 60: 522-527.
Ferrari M.C.O. , Messier F. , Chivers D.P. (2007). Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. — Chemoecology 17: 263-266.
Ferrari M.O. , Wisenden B.D. , Chivers D.P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. — Can. J. Zool. 88: 698-724.
Fine J.M. , Vrieze L.A. , Sorensen P.W. (2004). Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. — J. Chem. Ecol. 30: 2091-2110.
Gall B.G. , Mathis A. (2011). Ontogenetic shift in response to amphibian alarm cues by banded sculpins (Cottus carolinae). — Copeia: 5-8.
Gende S.M. , Quinn T.P. , Wilson M.F. (2001). Consumption choice by bears feeding on salmon. — Oecologia 127: 372-382.
Golub J.L. , Brown G.E. (2003). Are all signals the same? Ontogenetic change in the response to conspecific and heterospecific chemical alarm signals by juvenile green sunfish (Lepomis cyanellus). — Behav. Ecol. Sociobiol. 54: 113-118.
Hamdani E.H. , Døving K.B. (2007). The functional organization of the fish olfactory system. — Prog. Neurobiol. 82: 80-86.
Harvey M.C. , Brown G.E. (2004). Dine or dash? Ontogenetic shift in the response of yellow perch to conspecific alarm cues. — Environ. Biol. Fishes 70: 345-352.
Hazlett B.A. (1999). Responses to multiple chemical cues by the crayfish Orconectes virilis. — Behaviour 136: 161-171.
Imre I. , Brown G.E. , Bergstedt R.A. , McDonald R. (2010). Use of chemosensory cues as repellents for sea lamprey: potential directions for population management. — J. Great Lakes Res. 36: 790-793.
Johnson N.S. , Yun S.S. , Thompson H.T. , Brant C.O. , Li W. (2009). A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. — Proc. Natl. Acad. Sci. USA 106: 1021-1026.
Kats L.B. , Dill K.M. (1998). The scent of death: chemosensory assessment of predation risk by prey animals. — Ecoscience 5: 361-394.
Kim J.W. , Brown G.E. , Dolinsek I.J. , Brodeur N.N. , Leduc A.O.H.C. , Grant J.W.A. (2009). Combined effects of chemical and visual information in eliciting antipredator behaviour in juvenile Atlantic salmon, Salmo salar. — J. Fish Biol. 74: 1280-1290.
Kobayashi M. , Sorensen P.W. , Stacey N.E. (2002). Hormonal and pheromonal control of spawning behavior in the goldfish. — Fish Physiol. Biochem. 26: 71-84.
Laframboise A.J. , Ren X. , Chang S. , Dubuc R. , Zielinski B.S. (2007). Olfactory sensory neurons in the sea lamprey display polymorphisms. — Neurosci. Lett. 414: 277-281.
Lastein S. , Höglund E. , Mayer I. , Øverli Ø. , Døving K.B. (2008). Female crucian carp, Carassius carassius, lose predator avoidance behavior when getting ready to mate. — J. Chem. Ecol. 34: 1487-1491.
Li W. , Scott A.P. , Siefkes M.J. , Yan H. , Liu Q. , Yun S.S. , Gage D.A. (2002). Bile acid secreted by male sea lamprey that acts as a sex pheromone. — Science 296: 138-141.
Lima S.L. , Dill L.M. (1990). Behavioural decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640.
Littell R.C. , Stroup W.W. , Freund R.J. (2002). SAS® for linear models. — SAS Institute, Cary, NC.
Luehring M.A. , Wagner C.M. , Li W. (2011). The efficacy of two synthesized sea lamprey sex pheromone components as a trap lure when placed in direct competition with natural male odors. — Biol. Inv. 13: 1589-1597.
Manion P.J. , Hanson L.H. (1980). Spawning behavior and fecundity of lampreys from the upper three Great Lakes. — Can. J. Fish. Aquat. Sci. 37: 1635-1640.
Manion P.J. , Smith B.R. (1978). Biology of larval and metamorphosing sea lampreys, Petromyzon marinus, of the 1960 year class in the Big Garlic River, Michigan. Part 2. — Great Lakes Fishery Commission Technical Report No. 30. Great Lakes Fishery Commission, Ann Arbor, MI.
Marcus J.P. , Brown G.E. (2003). Response of pumpkinseed sunfish to conspecific chemical alarm cues: an interaction between ontogeny and stimulus concentration. — Can. J. Zool. 81: 1671-1677.
Mathis A. (2009). Alarm responses as a defense: chemical alarm cues in nonostariophysan fishes. — In: Fish defenses, Volume 2: Pathogens, parasites and predators ( Zaccone G. , Perrière C. , Mathis A. , Kapoor B.G. , eds). Science Publishers, Enfield, NH, p. 323-386.
Mathis A. , Smith R.J.F. (1993). Fathead minnows, Pimephales promelas, learn to recognize northern pike, Esox lucius, as predators on the basis of chemical stimuli from minnows in the pike’s diet. — Anim. Behav. 46: 645-656.
Mathuru A.S. , Kibat C. , Cheong W.F. , Shui G. , Wenk M.R. , Friedrich R.W. , Jesuthansan S. (2012). Chondroitin fragments are odorants that trigger fear behavior in fish. — Curr. Biol. 22: 538-544.
McLean F. , Barbee N.C. , Swearer S.E. (2007). Avoidance of native versus non-native predator odours by migrating whitebait and juveniles of the common galaxiid, Galaxias maculatus. — NZ. J. Mar. Freshw. Res. 41: 175-184.
McNamara J.M. , Dall S.R.X. (2010). Information is a fitness enhancing resource. — Oikos 119: 231-236.
Metcalfe N.B. , Huntingford F.A. , Thorpe J.E. (1987). The influence of predation risk on the feeding motivation and foraging strategy of juvenile Atlantic salmon. — Anim. Behav. 35: 901-911.
Mirza R.S. , Chivers D.P. (2001). Are chemical alarm cues conserved within salmonid fishes? — J. Chem. Ecol. 27: 1641-1655.
Mirza R.S. (2009). The nose knows: chemically mediated antipredator defenses in ostariophysans. — In: Fish defenses, Volume 2: Pathogens, parasites and predators ( Zaccone G. , Perrière C. , Mathis A. , Kapoor B.G. , eds). Science Publishers, Enfield, NH, p. 291-322.
Mirza R.S. , Chivers D.P. (2003). Response of juvenile rainbow trout to varying concentrations of chemical alarm cue: response thresholds and survival during encounters with predators. — Can. J. Zool. 81: 88-95.
Mirza R.S. , Scott J.J. , Chivers D.P. (2001). Differential responses of male and female red swordtails to chemical alarm cues. — J. Fish Biol. 59: 716-728.
Moore P. , Crimaldi J. (2004). Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. — J. Mar. Sys. 49: 55-64.
Olsson O. , Brown J.S. , Smith H.G. (2002). Long- and short-term state-dependent foraging under predation risk: an indication of habitat quality. — Anim. Behav. 63: 981-989.
Pfeiffer W. (1962). The fright reaction of fish. — Biol. Rev. 37: 495-511.
Pfeiffer W. (1977). Distribution of fright reaction and alarm substance cells in fishes. — Copeia: 653-665.
Pfeiffer W. , Pletcher T.E. (1964). Club cells and granular cells in the skin of lampreys. — J. Fish. Res. Board Can. 21: 1083-1088.
Richardson M.K. , Admiraal J. , Wright G.M. (2010). Developmental anatomy of lampreys. — Biol. Rev. Camb. Philos. Soc. 85: 1-33.
Rohr J.R. , Madison D.M. , Sullivan A.M. (2002). The ontogeny of chemically-mediated antipredator behaviours in Newts (Notophthalmus viridescens): responses to injured and non-injured conspecifics. — Behaviour 139: 1043-1060.
Schmidt K.A. , Dall S.R.X. , Van Gils J.A. (2010). The ecology of information: an overview on the ecological significance of making informed decisions. — Oikos 119: 304-316.
Schütz F. (1956). Vergleichende Untersuchungen uber die Schreck- reaktion bei Fischen und deren Verbreitung. — Z. Vgl. Physiol. 38: 84-135.
Shabani S. , Kamio M. , Derby C.D. (2008). Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla. — J. Exp. Biol. 211: 2600-2608.
Siefkes M.J. , Bergstedt R.A. , Twohey M.B. , Li W. (2003). Chemosterilization of male sea lampreys does not affect sex pheromone release. — Can. J. Fish. Aquat. Sci. 60: 23-31.
Sih A. (1980). Optimal foraging: partial consumption of prey. — Am. Nat. 116: 281-290.
Smith R.J.F. (1976). Seasonal loss of alarm substance cells in North American Cyprinoid fishes and its relation to abrasive spawning. — Can. J. Zool. 54: 1172-1182.
Smith R.J.F. (1979). Alarm reaction of Iowa and Johnny darters to chemicals from injured conspecifics. — Can. J. Zool. 57: 1278-1282.
Smith R.J.F. (1992). Alarm signals in fishes. — Rev. Fish Biol. Fish. 2: 33-63.
Sorensen P.W. , Fine J.M. , Dvornikovs V. , Jeffrey C.S. , Shao J.F. , Wang J.Z. , Vrieze L.A. , Anderson K.A. , Hoye T.R. (2005). Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. — Nature Chem. Biol. 1: 324-328.
Sower S.A. , Plisetskaya E. , Gorbman A. (1985). Steroid and thyroid hormone profiles following a single injection of partly purified salmon gonadotropin or GnRH analogues in male and female sea lamprey. — J. Exp. Zool. 235: 403-408.
Vrieze L.A. , Bergstedt R.A. , Sorensen P.W. (2011). Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus). — Can. J. Fish. Aquat. Sci. 63: 523-533.
Wagner R.H. , Danchin É. (2010). A taxonomy of biological information. — Oikos 119: 203-209.
Wagner C.M. , Jones M.L. , Twohey M.B. , Sorensen P.W. (2006). A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. — Can. J. Fish. Aquat. Sci. 63: 475-479.
Wagner C.M. , Twohey M.B. , Fine J.M. (2009). Conspecific cueing in the sea lamprey: do reproductive migrations consistently follow the most intense larval odor? — Anim. Behav. 78: 593-599.
Wagner C.M. , Stroud E.M. , Meckley T.D. (2011). A deathly odor suggests a new sustainable tool for controlling a costly invasive species. — Can. J. Fish. Aquat. Sci. 68: 1157-1160.
Waldman J. , Grunwald C. , Wirgin I. (2008). Sea lamprey Petromyzon marinus: an exception to the rule of homing in anadromous fishes. — Biol. Lett. 4: 659-662.
Webster M.M. , Laland K. (2011). Reproductive state affects reliance on public information in sticklebacks. — Proc. R. Soc. Lond. B Biol. 278: 619-627.
Williams J.L. , Snyder W.E. , Wise D.H. (2001). Sex-based differences in antipredator behavior in the spotted cucumber beetle (Coleoptera: Chrysomelidae). — Entomol. Soc. Am. 30: 327-332.
Wigley R.L. (1959). Life history of the sea lamprey of Cayuga Lake, New York. — Fish. Bull. U.S. Fish Wildl. Serv., Washington 59: 561-616.
Wisenden B.D. (2008). Active space of chemical alarm cue in natural fish populations. — Behaviour 145: 391-407.
Wisenden B.D. , Chivers D.P. (2006). The role of public chemical information in antipredator behaviour. — In: Communication in Fishes, Vol. 1 ( Ladich F. , Collin S.P. , Moller P. , Kapoor B.G. , eds). Science Publishers, Enfield, NH, p. 259-278.
Wisenden B.D. , Chivers D.P. , Smith R.J.F. (1995). Early warning in the predation sequence: a disturbance pheromone in Iowa darters (Etheostoma exile). — J. Chem. Ecol. 21: 1469-1480.
Wisenden B.D. , Cline A. , Sparkes T.C. (1999). Survival benefit to antipredator behavior in the amphipod Gammarus minus (Crustacea: Amphipoda) in response to injury-released chemical cues from conspecifics and heterospecifics. — Ethology 105: 407-414.
Wisenden B.D. , Rugg M.L. , Korpi N.L. , Fuselier L.C. (2009). Lab and field estimates of active time of chemical alarm cues of a cyprinid fish and an amphipod crustacean. — Behaviour 146: 1423-1442.
Wisenden B.D. , Binstock C.L. , Knoll K.E. , Linke A.D. , Demuth B.S. (2010). Risk-sensitive information gathering by cyprinids following release of chemical alarm cues. — Anim. Behav. 79: 1101-1107.
Yao M. , Rosenfeld J. , Attridge S. , Sidhu S. , Aksenov V. , Rollo C.D. (2009). The ancient chemistry of avoiding risks of predation and disease. — Evol. Biol. 36: 267-281.
Zhao X. , Ferrari M.C.O. , Chivers D.P. (2006). Threat-sensitive learning of predator odours by a prey fish. — Behaviour 143: 1103-1121.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1366 | 117 | 6 |
Full Text Views | 290 | 16 | 3 |
PDF Views & Downloads | 174 | 21 | 6 |
The sea lamprey, Petromyzon marinus, exhibits a spectacular alarm response to the odor emitted from decayed conspecifics that may differ substantially in function from the well-characterized system in ostariophysan fishes. Here, we report a series of three laboratory experiments designed to characterize the behavioral responses of migratory-phase lampreys to a set of odors derived from conspecific and heterospecific tissues, determine whether sex or sexual maturation alters these responses, and ascertain if the putative alarm substance derives from a particular region of the body. A number of the findings were consistent with the prevailing predator-avoidance paradigm for fish alarm substances released from the skin after predator attack in that: (1) dilute odors derived from freshly ground skin were highly repellent; (2) the substance is contained in the organism early in life; (3) the odor derived from a close relative was avoided whereas those of a distant relative were not; and (4) upon sexual maturity female response to the alarm substance was attenuated. Two interesting patterns arose that differed substantially from the prevailing paradigm: (1) conspecific odors remained repellent after 96 h of aerobic decay; and (2) the cue was emitted from multiple areas of the body, not just the skin, and the repellency of the odor derived from any tissue increased in accordance with its mass. A persistent cue emitted from several sources suggests a broader ecological function than the detection and avoidance of a predator.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1366 | 117 | 6 |
Full Text Views | 290 | 16 | 3 |
PDF Views & Downloads | 174 | 21 | 6 |