Experimental analysis of predator and prey detection abilities in rainforest: who has the advantage?

In: Behaviour
View More View Less
  • 1 Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
  • 2 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
  • 3 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
  • 4 Instituto de Biología Subtropical, Universidad Nacional de Misiones, Puerto Iguazú, Argentina

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Recent theoretical analyses have shown that anti-predator benefits in social groups depend on the attack distance of the predator relative to prey spacing within groups. Both attack distance and prey spacing depend on the ability of predator and prey to detect each other. Previous work on forest predators suggest that many depend on surprise to ambush their prey, thus we test the hypothesis that detection distances by eagles of monkeys are greater than vice versa, despite the supposed advantages of sociality in facilitating detection of predators by prey. We used field experiments in the wild to assess detection distances of both raptor predators and their natural monkey prey. Live hawk-eagles (Spizaetus), under rehabilitation from injury, were placed tethered to perches in the home ranges of two habituated wild study groups of tufted capuchin monkeys (Cebus (apella) nigritus) in Iguazú National Park, Argentina. Analysis of video footage of the eagles during the approach of capuchin monkey groups allowed us to define the first moment of behaviours indicating detection by the eagle; detection behaviours of the monkeys near the eagle were recorded observationally by field assistants. The hawk-eagles always detected the monkeys (average distance 31.9 m) before the monkeys detected the predators (average distance 9.4 m). Predators always initially detected one or two spatially-peripheral individuals of the prey group. Distance of detection by the predators (and thus maximum possible attack distances) was significantly less than the prey group spread of 42–57 m. The short detection (and consequent short attack) distances by eagles of monkey prey in this habitat suggests that early warning of attacking eagles may not be a primary benefit of grouping in this case.

  • Andersson M., Wallander J., Isaksson D. (2009). Predator perches: a visual search perspective. — Funct. Ecol. 23: 373-379.

  • Bednekoff P.A., Lima S.L. (1998). Re-examining safety in numbers: interactions between risk dilution and collective detection depend upon predator targeting behaviour. — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 2021-2026.

    • Search Google Scholar
    • Export Citation
  • Blumstein D.T., Fernandez-Juricic E., LeDee O., Larsen E., Rodriguez-Prieto I., Zugmeyer C. (2004). Avian risk assessment: effects of perching height and detectability. — Ethology 110: 273-285.

    • Search Google Scholar
    • Export Citation
  • Boinski S., Kauffman L., Westoll A., Stickler C.M., Cropp S., Ehmke E. (2003). Are vigilance, risk from avian predators and group size consequences of habitat structure? A comparison of three species of squirrel monkey (Saimiri oerstedii, S. boliviensis, and S. sciureus). — Behaviour 140: 1421-1467.

    • Search Google Scholar
    • Export Citation
  • Boland C.R.J. (2003). An experimental test of predator detection rates using groups of free-living emus. — Ethology 109: 209-222.

  • Caro T. (2005). Antipredator defenses in birds and mammals. — Chicago University Press, Chicago, IL.

  • Cowlishaw G. (1997a). Alarm calling and implications for risk perception in a desert baboon population. — Ethology 103: 384-394.

  • Cowlishaw G. (1997b). Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. — Anim. Behav. 53: 667-686.

    • Search Google Scholar
    • Export Citation
  • Cresswell W., Lind J., Kaby U., Quinn J.L., Jakobsson S. (2003). Does an opportunistic predator preferentially attack nonvigilant prey?Anim. Behav. 66: 643-648.

    • Search Google Scholar
    • Export Citation
  • Cresswell W., Lind J., Quinn J.L. (2010). Predator-hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. — J. Anim. Ecol. 79: 556-562.

    • Search Google Scholar
    • Export Citation
  • Cuadrado M., Martin J., Lopez P. (2001). Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. — Biol. J. Linn. Soc. 72: 547-554.

    • Search Google Scholar
    • Export Citation
  • Di Bitetti M. (2001). The adaptive significance of food-associated calls in the tufted capuchin monkey (Cebus apella). — PhD dissertation, State University of New York at Stony Brook, Stony Brook, NY.

  • Ebensperger L.A., Wallem P.K. (2002). Grouping increases the ability of the social rodent, Octodon degus, to detect predators when using exposed microhabitats. — Oikos 98: 491-497.

    • Search Google Scholar
    • Export Citation
  • Hamilton W.D. (1971). Geometry for the selfish herd. — J. Theor. Biol. 31: 295-311.

  • Hilton G.M., Cresswell W., Ruxton G.D. (1999). Intraflock variation in the speed of escape-flight response on attack by an avian predator. — Behav. Ecol. 10: 391-395.

    • Search Google Scholar
    • Export Citation
  • Hirsch B.T. (2002). Social monitoring and vigilance behavior in brown capuchin monkeys (Cebus apella). — Behav. Ecol. Sociobiol. 52: 458-464.

    • Search Google Scholar
    • Export Citation
  • Hirsch B.T., Morrell L.J. (2011). Measuring marginal predation in animal groups. — Behav. Ecol. 22: 648-656.

  • Hoogland J.L. (1981). The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae: Cynomys leucurus and C. ludovicianus). — Ecology 62: 252-272.

    • Search Google Scholar
    • Export Citation
  • James R., Bennett P.G., Krause J. (2004). Geometry for mutualistic and selfish herds: the limited domain of danger. — J. Theor. Biol. 228: 107-113.

    • Search Google Scholar
    • Export Citation
  • Janson C.H. (1984). Female choice and mating system of the brown capuchin monkey Cebus apella (Primates: Cebidae). — Z. Tierpsychol. 65: 177-200.

    • Search Google Scholar
    • Export Citation
  • Janson C.H. (1990). Ecological consequences of individual spatial choice in foraging brown capuchin monkeys (Cebus apella). — Anim. Behav. 38: 922-934.

    • Search Google Scholar
    • Export Citation
  • Janson C.H. (1998a). Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. — Anim. Behav. 55: 1229-1243.

    • Search Google Scholar
    • Export Citation
  • Janson C.H. (1998b). Testing the predation hypothesis for vertebrate sociality: prospects and pitfalls. — Behaviour 135: 389-410.

  • Janson C.H. (2003). Puzzles, predation, and primates: using life history to understand selection pressures. — In: Primate life histories and socioecology ( Kappeler P., Pereira M., eds). Chicago University Press, Chicago, IL, p.  103-131.

    • Search Google Scholar
    • Export Citation
  • Janson C.H. (2007). Experimental evidence for route integration and strategic planning in wild capuchin monkeys. — Anim. Cogn. 10: 341-356.

    • Search Google Scholar
    • Export Citation
  • Janson C.H., Di Bitetti M. (1997). Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed, and resource size. — Behav. Ecol. Sociobiol. 41: 17-24.

    • Search Google Scholar
    • Export Citation
  • Janson C.H., Baldovino M.C., Di Bitetti M.S. (2012). The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. — In: Long-term field studies of primates ( Kappeler P., Watts D.P., eds). Springer, Heidelberg, p.  185-212.

    • Search Google Scholar
    • Export Citation
  • Kenward R.E. (1978). Hawks and doves: attack success and selection in goshawk flights at wood-pigeons. — J. Anim. Ecol. 47: 449-460.

    • Search Google Scholar
    • Export Citation
  • Kruuk H. (1972). The Spotted Hyena: a study of predation and social behavior. — Chicago University Press, Chicago, IL.

  • Lima S.L. (1994). Collective detection of predatory attack by birds in the absence of alarm signals. — J. Avian Biol. 25: 319-326.

  • Lima S.L. (1995). Collective detection of predatory attack by social foragers — fraught with ambiguity. — Anim. Behav. 50: 1097-1108.

    • Search Google Scholar
    • Export Citation
  • Lima S.L., Dill L.M. (1990). Behavioral decisions made under the risk of predation — a review and prospectus. — Can. J. Zool. 68: 619-640.

    • Search Google Scholar
    • Export Citation
  • Lima S.L., Zollner P.A. (1996). Anti-predatory vigilance and the limits to collective detection: visual and spatial separation between foragers. — Behav. Ecol. Sociobiol. 38: 355-363.

    • Search Google Scholar
    • Export Citation
  • Placci L., Arditi S., Ciotek L.E. (1994). Productividad de hojas, flores y frutos en el Parque Nacional Iguazú. — Yvirareta 5: 49-56.

  • Pulliam H.R. (1973). On the advantages of flocking. — J. Theor. Biol. 38: 419-422.

  • Pulliam H.R., Pyke G.H., Caraco T. (1982). The scanning behavior of juncos: a game-theoretical approach. — J. Theor. Biol. 95: 89-103.

  • Ramirez-Llorens P., Di Bitetti M.S., Baldovino M.C., Janson C.H. (2008). Infanticide in black capuchin monkeys (Cebus apella nigritus) in Iguazú National Park, Argentina. — Am. J. Primatol. 70: 473-484.

    • Search Google Scholar
    • Export Citation
  • Robinson S.K. (1994). Habitat selection and foraging ecology of raptors in Amazonian Peru. — Biotropica 26: 443-458.

  • Schaller G.B. (1972). The Serengeti Lion: a study of predator-prey relations. — Chicago University Press, Chicago, IL.

  • Shultz S. (2001). Notes on interactions between monkeys and African crowned eagles in Taï National Park, Ivory Coast. — Folia Primatol. 72: 248-250.

    • Search Google Scholar
    • Export Citation
  • Taylor R.J. (1976). Value of clumping to prey and the evolutionary response of ambush predators. — Am. Nat. 110: 13-29.

  • Taylor R.J., Balph D.F., Balph M.H. (1990). The evolution of alarm calling: a cost-benefit analysis. — Anim. Behav. 39: 860-868.

  • Terborgh J.W. (1990). Mixed flocks and polyspecific associations: costs and benefits of mixed groups to birds and monkeys. — Am. J. Primatol. 21: 87-100.

    • Search Google Scholar
    • Export Citation
  • Treves A. (1999). Has predation shaped the social systems of arboreal primates?Int. J. Primatol. 20: 35-67.

  • Treves A., Drescher A., Ingrisano N. (2001). Vigilance and aggregation in black howler monkeys (Alouatta pigra). — Behav. Ecol. Sociobiol. 50: 90-95.

    • Search Google Scholar
    • Export Citation
  • van Schaik C.P., van Noordwijk M.A. (1989). The special role of male Cebus monkeys in predation avoidance and its effect on group composition. — Behav. Ecol. Sociobiol. 24: 265-276.

    • Search Google Scholar
    • Export Citation
  • Vine I. (1971). Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. — J. Theor. Biol 30: 406-422.

    • Search Google Scholar
    • Export Citation
  • Wheeler B.C. (2008). Selfish or altruistic? An analysis of alarm call function in wild capuchin monkeys, Cebus apella nigritus. — Anim. Behav. 76: 1465-1475.

    • Search Google Scholar
    • Export Citation
  • Ydenberg R.C., Dill L.M. (1986). The economics of fleeing from predators. — Adv. Stud. Behav. 16: 229-249.

  • Zuberbühler K., Jenny D., Bshary R. (1999). The predator deterrence function of primate alarm calls. — Ethology 105: 477-490.

  • Zuberbühler K., Noe R., Seyfarth R.M. (1997). Diana monkey long-distance calls: messages for conspecifics and predators. — Anim. Behav. 53: 589-604.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 142 54 12
Full Text Views 211 2 1
PDF Views & Downloads 21 4 2