Host behaviour, age and sex correlate with ectoparasite prevalence and intensity in a colonial mammal, the little brown bat

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The influence of behaviour on host-parasite dynamics has theoretical support but few empirical studies have examined this influence for wild-captured hosts, especially in colonial species, which are thought to face generally high risk of exposure. Behavioural tendencies of hosts in novel environments could mediate host exposure. We tested the hypothesis that behavioural tendencies of hosts, and host sex and age, correlate with prevalence and intensity of ectoparasites in a gregarious mammal, the little brown bat (Myotis lucifugus). We also tested whether relationships between host behaviour and parasite prevalence and intensity would vary between taxa of ectoparasites which differ in host-seeking behaviour. We predicted that individual hosts displaying active and explorative behaviours would have higher prevalence and intensity of parasites that depend on physical contact among hosts for transmission (mites) but that host behaviour would not influence prevalence and intensity of mobile ectoparasites with active host-seeking behaviour (fleas). We recorded behavioural responses of wild-captured bats in a novel-environment test and then sampled each individual for ectoparasites. After accounting for age and sex we found mixed support for our hypotheses in some but not all demographics. More active adult and young of the year (YOY) males were more likely to host mites while more active adult and YOY females were less likely to host fleas. Our results highlight possible differences in the influence of host and parasite behaviour on parasite transmission dynamics for colonial compared to non-colonial species and have conservation implications for understanding pathogen transmission in bat white-nose syndrome and other wildlife diseases.



AlexanderR.D. (1974). The evolution of social behavior. — Annu. Rev. Ecol. Syst. 5: 325-383.

AltizerS.NunnC.L.ThrallP.H.GittlemanJ.L.AntonovicsJ.CunninghamA.A.DobsonA.P.EzenwaV.JonesK.E.PedersonA.B.PossM.PulliamJ.R.C. (2003). Social organization and parasite risk in mammals: integrating theory and empirical studies. — Annu. Rev. Ecol. Evol. Syst. 34: 517-547.

AndersonR.M.MayR.M. (1979). Population biology of infectious diseases: part I. — Nature 280: 361-367.

AndersonR.M.MayR.M. (1992). Infectious diseases of humans: dynamics and control. — Oxford University Press, Oxford.

AngeloniL.SchlaepferM.A.LawlerJ.J.CrooksK.R. (2008). A reassessment of the interface between conservation and behaviour. — Anim. Behav. 75: 731-737.

BarberI.DingemanseN.J. (2010). Parasitism and the evolutionary ecology of animal personality. — Phil. Trans. Roy. Soc. B 365: 4077-4088.

BerdoyM.WebsterJ.P.MacdonaldD.W. (2000). Fatal attraction in rats infected with Toxoplasma gondii. — Proc. Roy. Soc. Lond. B: Biol. Sci. 267: 1591-1594.

BoyerN.RéaleD.MarmetJ.PisanuB.ChapiusJ. (2010). Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibricus. — J. Anim. Ecol. 79: 538-547.

ChristeP.ArlettazR.VogelP. (2000). Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to reproductive cycle and immunocompetence of its bat host (Myotis myotis). — Ecol. Lett. 3: 207-212.

ChristeP.GiorgiM.S.VogelP.ArlettazR. (2003). Differential species-specific ectoparasite mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization?J. Anim. Ecol. 72: 866-872.

ChristeP.GlaizotO.EvannoG.BruyndonckxN.DeveveyG.YannicG.PattheyP.MaederA.VogelP.ArlettazR. (2007). Host sex and ectoparasite choice: preference for, and higher survival for female hosts. — J. Anim. Ecol. 76: 703-710.

CoteJ.DreissA.ClobertJ. (2008). Social personality trait and fitness. — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 2851-2858.

CôtéI.M.PoulinR. (1995). Parasitism and group size in social animals: a meta-analysis. — Behav. Ecol. 6: 159-165.

CullyJ.F.WilliamsE.S. (2001). Interspecific comparisons of sylvatic plague in prairie dogs. — J. Mammal. 82: 894-905.

CzenzeZ.J.BrodersH.G. (2011). Ectoparasite community structure of two bats (Myotis lucifugus and M. septentrionalis) from the Maritimes of Canada. — J. Parasitol. Res. 2011: 1-9.

DickC.W.GannonM.R.LittleW.E.PatrickM.J. (2003). Ectoparasite associations of bats from central Pennsylvania. — J. Med. Entomol. 40: 813-819.

DreweJ.A. (2010). Who infects whom? Social networks and tuberculosis transmission in wild meerkats. — Proc. Roy. Soc. Lond. B: Biol. Sci. 227: 633-642.

DunnJ.C.ColeE.F.QuinnJ.L. (2011). Personality and parasites: sex-dependent associations between avian malaria infection and multiple behavioural traits. — Behav. Ecol. Sociobiol. 65: 1459-1471.

FauchaldP.RødvenR.BårdsenB.LangelandK.TveraaT.YoccozN.G.ImsR.A. (2007). Escaping parasitism in the selfish herd: age, size and density-dependent warble fly infestation in reindeer. — Oikos 116: 491-499.

FentonM.B. (1969). Summer activity of Myotis lucifugus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. — Can. J. Zool. 47: 597-602.

FileS.F.WardillA.G. (1975). Validity of head-dipping as a measure of exploration in a modified hole-board. — Psychopharmacologia 44: 53-59.

FrickW.F.PollockJ.F.HicksA.C.LangwigK.E.ReynoldsD.S.TurnerG.G.ButchkoskiC.M.KunzT.H. (2010). An emerging disease causes regional population collapse of a common North American bat species. — Science 329: 679-682.

GiorgiM.S.ArlettazR.ChristeP.VogelP. (2001). The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). — Proc. Roy. Soc. Lond. B: Biol. Sci. 268: 2071-2075.

HawleyD.M.EtienneR.S.EzenwaV.O.JollesA.E. (2011). Does animal behaviour underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? Implications for disease dynamics. — Integr. Comp. Biol. 51: 528-539.

HillgarthN. (1996). Ectoparasite transfer during mating in ring-necked pheasants Phasianus colchicus. — J. Avian. Biol. 3: 260-262.

HosseiniP.R.DhondtA.A.DobsonA. (2004). Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271: 2569-2577.

KaiserH.F. (1991). Coefficient alpha for a principal component and the Kaiser–Guttman rule. — Psych. Rep. 68: 855-858.

KhoklovaI.S.KrasnovB.R.KamM.BurdelovaN.I.DegenA.A. (2002). Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. — J. Zool. Lond. 258: 349-354.

KilgourR.J.BrighamR.M. (2013). The relationship between behavioural correlates and social influences in the gregarious big brown bat (Eptesicus fuscus). — Ethology 119: 1-10.

KortetR.HedrickA.V.VainikkaA. (2010). Parasitism, predation and the evolution of animal personalities. — Ecol. Lett. 13: 1449-1458.

KunzT.H.LumsdenL.F. (2003). Ecology of cavity and foliage roosting bats. — In: Bat ecology ( KunzT.H.FentonM.B., eds). University Chicago Press, Chicago, IL.

LorchJ.M.MeteyerC.U.BehrM.J.BoylesJ.G.CryanP.M.HicksA.C.BallmannA.E.ColemanJ.T.H.RedellD.N.ReederD.M.BlehertD.S. (2011). Experimental infection of bats with Geomyces destructans causes white-nose syndrome. — Nature 480: 376-378.

LourençoS.I.PalmeirimJ.M. (2007). Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. — J. Zool. 273: 161-168.

LuisA.D.HaymanD.T.S.O’SheaT.J.CryanP.M.GilbertA.T.PulliamJ.R.C.MillsJ.N.TimoninM.E.WillisC.K.R.CunninghamA.A.FooksA.R.RupprechtC.E.WoodJ.L.N.WebbC.T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?Proc. Roy. Soc. Lond. B: Biol. Sci. 280: 1-9.

MartinJ.G.RéaleD. (2008). Temperament, risk assessment and habituation to novelty in eastern chipmunks, Tamias striatus. — Anim. Behav. 75: 309-318.

Martinez-NuñezF. (2012). Population and social genetic structure of little brown bats (Myotis lucifugus). — Thesis submitted to University of Winnipeg, Department of Biology, Winnipeg, MB.

MayR.M.AndersonR.M. (1979). Population biology of infectious diseases: part II. — Nature 280: 455-461.

McCallumH. (2012). Disease and the dynamics of extinction. — Phil. Trans. Roy. Soc. B 367: 2828-2839.

MenziesA.K.TimoninM.E.McGuireL.P.WillisC.K.R. (2013). Personality variation in little brown bats. — PLoS ONE 8: e80230.

MooreJ. (2002). Parasites and the behaviour of animals. — Oxford University Press, Oxford.

NorquayK.J.O.Martinez-NuñezF.DuboisJ.E.MonsonK.M.WillisC.K.R. (2013). Long-distance movements of little brown bats (Myotis lucifugus). — J. Mammal. 94: 506-515.

OliverJ.M. (1989). Biology and systematics of ticks (Acari: Ixodida). — Annu. Rev. Ecol. Syst. 20: 397-430.

PattersonL.D.Schulte-HosteddeA.I. (2011). Behavioural correlates of parasitism and reproductive success in male eastern chipmunks, Tamias striatus. — Anim. Behav. 81: 1129-1137.

PearceR.D.O’SheaT.J. (2007). Ectoparasites in an urban population of big brown bats (Eptesicus fuscus) in Colorado. — J. Parasitol. 93: 518-530.

Perez-OrellaC.Schulte-HosteddeA.I. (2005). Effects of sex and body size on ectoparasite loads in the northern flying squirrel (Glaucomys sabrinus). — Can. J. Zool. 83: 1381-1385.

ProctorH.OwensI. (2000). Mites and birds: diversity, parasitism and coevolution. — Trends Ecol. Evol. 15: 358-364.

R Development Core Team (2012). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna.

RéaleD.GallantB.Y.LeBlancM.Festa-BianchetM. (2000). Consistency of temperament in bighorn ewes and correlates with behaviour and life history. — Anim. Behav. 60: 589-597.

ScholtofK.G. (2006). The disease triangle: pathogens, the environment and society. — Nature Rev. Microbiol. 5: 152-156.

Schulte-HosteddeA.I.MillarJ.S.HicklingG.J. (2001). Evaluating body condition in small mammals. — Can. J. Zool. 79: 1021-1029.

SihA.BellA.M.Chadwick-JohnsonJ.ZiembaR.E. (2004). Behavioural syndromes: an integrative overview. — Q. Rev. Biol. 79: 241-277.

SmithS.A.ClayM.E. (1988). Biological and morphological studies on the bat flea Myodopsylla insignis (Siphonaptera: Ischnopsyllidae). — J. Med. Entomol. 25: 413-424.

ThomasD.W.FentonM.B.BarclayR.M.R. (1979). Social behaviour of the little brown bat, Myotis lucifugus, I. Mating behaviour. — Behav. Ecol. Sociobiol. 6: 129-136.

United States Fish and Wildlife Service (2012). National white-nose syndrome decontamination protocol. — United States Fish and Wildlife Service, Washington, DC, available online at (accessed 6 November 2013).

WebsterJ.P.BruntonC.F.A.MacdonaldD. (1994). Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. — Parasitology 109: 37-43.

WillisC.K.R.BrighamR.M. (2007). Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. — Behav. Ecol. Sociobiol. 62: 97-108.

WilsonD.S.ColemanK.ClarkA.B.BiedermanL. (1993). Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. — J. Comp. Psychol. 107: 250-260.

ZuurA.F.IenoE.N.WalkerN.J.SavelievA.A.SmithG.M. (2009). Mixed effects models and extensions in ecology with R. — Springer, New York, NY.


  • Probability of flea parasitism generated using best-fit logistic regression models for adult females (A) and young of the year (Sub-Adult) females (B) as a function of the activity (PC1); Predicted intensity of flea parasitism generated using best-fit zero-inflated mixture models for adult females (C) and YOY females (D) as a function of activity.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 2
Full Text Views 4 4 4
PDF Downloads 1 1 1
EPUB Downloads 0 0 0