No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae)

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Aposematic colouration deters visually oriented predators because conspicuous signals are easier to detect and associate with unpalatability. Consequently, brightly coloured prey that are novel are predicted to be preyed on more than those with bright but typical colours. Here we evaluated whether predatory bias is associated with the colour differences observed at two different localities for a large, conspicuously coloured and poisonous Amazonian frog, Adelphobates galactonotus. At each locality predation experiments were carried out using frog models of two naturally occurring colours of the study species (blue and orange) and a control (brown). We found no evidence that novel colours were more vulnerable to predation than local colours. These results do not therefore support our hypothesis that predatory bias explains the geographic variation of colour in A. galactonotus.

No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae)

in Behaviour

Sections

References

  • AmézquitaA.CastroL.AriasM.GonzálezM.EsquivelC. (2013). Field but not lab paradigms support generalization by predators of aposematic polymorphic prey: the Oophaga histrionica complex. — Evol. Ecol. 27: 769-782.

    • Search Google Scholar
    • Export Citation
  • BezzeridesA.L.McGrawK.J.ParkerR.S.HusseiniJ. (2007). Elytra colour as a signal of chemical defense in the Asian ladybird beetle Harminia axyridis. — Behav. Ecol. Sociobiol. 61: 1401-1408.

    • Search Google Scholar
    • Export Citation
  • BlancoG.BertellottiM. (2002). Differential predation by mammals and birds: implications for egg-colour polymorphism in a nomadic breeding seabird. — Biol. J. Linn. Soc. 75: 137-146.

    • Search Google Scholar
    • Export Citation
  • BlountJ.D.RowlandH.M.DrijfhoutF.P.EndlerJ.A.IngerR.SloggettJ.J.HurstG.D.D.HodgsonD.J.SpeedM.P. (2012). How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. — Funct. Ecol. 26: 334-342.

    • Search Google Scholar
    • Export Citation
  • ChouteauM.AngersB. (2011). The role of predators in maintaining the geographic organization of aposematic signals. — Am. Nat. 178: 810-817.

    • Search Google Scholar
    • Export Citation
  • ComeaultA.A.NoonanB.P. (2011). Spatial variation in the fitness of divergent aposematic phenotypes of the poison frog, Dendrobates tinctorius. — J. Evol. Biol. 24: 1374-1379.

    • Search Google Scholar
    • Export Citation
  • CortesiF.CheneyK.L. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. — J. Evol. Biol. 23: 1509-1518.

  • CottH.B. (1940). Adaptive colouration in animals. — Methuen & CoLondon.

  • CoyneJ.A.OrrH.A. (2004). Speciation. — Sinauer AssociatesSunderland, MA.

  • CummingsM.E.CrothersL.R. (2013). Interacting selection diversifies warning signals in a polytypic frog: an examination with the strawberry poison frog. — Evol. Ecol. 27: 693-710.

    • Search Google Scholar
    • Export Citation
  • DarstC.R.CummingsM.E. (2006). Predator learning favours mimicry of a less-toxic model in poison frogs. — Nature 440: 208-211.

  • DesplandE.SimpsonS.J. (2005). Food choices of solitarious and gregarious locusts reflect cryptic and aposematic antipredator strategies. — Anim. Behav. 69: 471-479.

    • Search Google Scholar
    • Export Citation
  • EndlerJ.A. (1988). Frequency-dependent predation, crypsis and aposematic colouration. — Phil. Trans. Roy. Soc. B: Biol. Sci. 319: 505-523.

    • Search Google Scholar
    • Export Citation
  • EndlerJ.A. (1991). Interactions between predators and prey. — In: Behavioural ecology an evolutionary approach ( KrebsJ.R.DaviesN.B. eds). BlackwellOxford p.  169-196.

    • Search Google Scholar
    • Export Citation
  • EndlerJ.A. (1993). The colour of light in forests and its implications. — Ecol. Monogr. 63: 1-27.

  • EndlerJ.A.MappesJ. (2004). Predator mixes and the conspicuousness of aposematic signals. — Am. Nat. 163: 532-547.

  • FaralloV.R.ForstnerM.R.J. (2012). Predation and maintenance of colour polymorphism in a habitat specialist squamate. — PLoS ONE 7: e30316.

    • Search Google Scholar
    • Export Citation
  • ForsmanA.AppelqvistS. (1999). Experimental manipulation reveals differential effects of colour pattern on survival in male and female pygmy grasshoppers. — J. Evol. Biol. 12: 391-401.

    • Search Google Scholar
    • Export Citation
  • GamberaleG.TullbergB.S. (1998). Aposematism and gregariousness: the combined effect of group size and signal repellence. — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 889-894.

    • Search Google Scholar
    • Export Citation
  • GrillC.P.MooreA.J. (1998). Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. — Oecologia 114: 274-282.

    • Search Google Scholar
    • Export Citation
  • HarveyP.H.BullJ.J.PembertonM.PaxtonR.J. (1982). The evolution of aposematic colouration in distasteful prey: a family model. — Am. Nat. 119: 710-719.

    • Search Google Scholar
    • Export Citation
  • HegnaR.H.SaporitoR.A.GerowK.G.DonnellyM.A. (2011). Contrasting colours in an aposematic frog do not affect predation. — Ann. Zool. Fenn. 48: 29-38.

    • Search Google Scholar
    • Export Citation
  • HegnaR.H.SaporitoR.A.DonnellyM.A. (2012). Not all colours are equal: predation and colour polytypism in the aposematic poison frog Oophaga pumilio. — Evol. Ecol. 27: 831-845.

    • Search Google Scholar
    • Export Citation
  • HoogmoedM.S.Avila-PiresT.C.S. (2012). Inventory of colour polymorphism in populations of Dendrobates galactonotus (Anura: Dendrobatidae), a poison frog endemic to Brazil. — Phyllomedusa 11: 95-115.

    • Search Google Scholar
    • Export Citation
  • HusakJ.F.MacedoniaJ.M.FoxS.F.SaucedaR.C. (2006). Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. — Ethology 112: 572-580.

    • Search Google Scholar
    • Export Citation
  • JigginsC.NaisbitR.E.CoeR.L.MalletJ. (2001). Reproductive isolation caused by colour pattern mimicry. — Nature 411: 302-305.

  • JoronM.WynneI.R.LamasG.MalletJ. (1999). Variable selection and the coexistence of multiple mimetic forms of the butterfly Heliconius numata. — Evol. Ecol. 13: 721-754.

    • Search Google Scholar
    • Export Citation
  • KapanD.D. (2001). Three butterfly system provides a field test of Müllerian mimicry. — Nature 409: 338-340.

  • LambertS.M.GenevaA.J.MahlerD.L.GlorR.E. (2013). Using genomic data to revisit an early example of reproductive character displacement in Haitian Anolis lizards. — Mol. Ecol. 22: 3981-3995.

    • Search Google Scholar
    • Export Citation
  • LindstedtC.EagerH.IhalainenE.KahilainenA.StevensM.MappesJ. (2011). Direction and strength of selection by predators for the colour of the aposematic wood tiger moth. — Behav. Ecol. 22: 580-587.

    • Search Google Scholar
    • Export Citation
  • LindstedtC.LindströmL.MappesJ. (2008). Hairiness and warning colours as components of antipredator defence: additive or interactive benefits?Anim. Behav. 75: 1703-1713.

    • Search Google Scholar
    • Export Citation
  • LindstedtC.LindströmL.MappesJ. (2009). Thermoregulation constrains effective warning signal expression. — Evolution 63: 469-478.

  • LindstedtC.TalsmaJ.H.R.IhalainenE.LindströmL.MappesJ. (2010). Diet quality affects warning colouration indirectly: excretion costs in a generalist herbivore. — Evolution 64: 68-78.

    • Search Google Scholar
    • Export Citation
  • LindströmL.AlataloR.V.MappesJ.RiipiM.VertainenL. (1999). Can aposematic signals evolve by gradual change?Nature 397: 249-251.

  • MaanM.E.CummingsM.E. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. — Evolution 62: 2334-2345.

    • Search Google Scholar
    • Export Citation
  • MaanM.E.CummingsM.E. (2012). Poison frog colours are honest signals of toxicity, particularly for bird predators. — Am. Nat. 179: E1-E14.

    • Search Google Scholar
    • Export Citation
  • MaiaR.EliasonC.M.BittonP.-P.DoucetS.M.ShawkeyM.D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. — Methods Ecol. Evol. 4: 906-913.

    • Search Google Scholar
    • Export Citation
  • MalletJ.JoronM. (1999). Evolution of diversity in warning colouration and mimicry: polymorphisms, shifting balance, and speciation. — Annu. Rev. Ecol. Syst. 30: 201-233.

    • Search Google Scholar
    • Export Citation
  • MarekP.E.BondJ.E. (2009). A Müllerian mimicry ring in Appalachian millipedes. — Proc. Natl. Acad. Sci. 106: 9755-9760.

  • MelinA.D.FediganL.M.HiramatsuC.SendallC.L.KawamuraS. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. — Anim. Behav. 73: 205-214.

    • Search Google Scholar
    • Export Citation
  • MochidaK. (2011). Combination of local selection pressures drives diversity in aposematic signals. — Evol. Ecol. 25: 1017-1028.

  • MyersC.W.DalyJ.W. (1983). Dart-poison frogs. — Sci. Am. 248: 96-105.

  • NokelainenO.ValkonenJ.LindstedtC.MappesJ. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. — J. Anim. Ecol. 83: 598-605.

    • Search Google Scholar
    • Export Citation
  • NoonanB.P.ComeaultA.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. — Biol. Lett. 5: 51-54.

  • NoresM. (2000). Species richness in the Amazonian bird fauna from an evolutionary perspective. — Emmu 100: 419-430.

  • OrrH.A.TurelliM. (2001). The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. — Evolution 55: 1085-1094.

    • Search Google Scholar
    • Export Citation
  • OxfordG.S.GillespieR.G. (1998). Evolution and ecology of spider colouration. — Annu. Rev. Entomol. 43: 619-643.

  • PaluhD.J.HantakM.M.SaporitoR.A. (2014). A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. — J. Herpetol. 48: 249-254.

    • Search Google Scholar
    • Export Citation
  • PresgravesD.C. (2010). The molecular evolutionary of basis formation. — Nature Rev. Genet. 11: 175-180.

  • R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna. Available online at http://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • ReynoldsR.G.FitzpatrickB.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. — Evolution 61: 2253-2259.

    • Search Google Scholar
    • Export Citation
  • Richards-ZawackiC.L.CummingsM.E. (2011). Intraspecific reproductive character displacement in a polymorphic poison dart frog, Dendrobates pumilio. — Evolution 65: 259-267.

    • Search Google Scholar
    • Export Citation
  • Richards-ZawackiC.L.YeagerJ.BartH.P.S. (2013). No evidence for differential survival or predation between sympatric colour morphs of an aposematic poison frog. — Evol. Ecol. 27: 783-795.

    • Search Google Scholar
    • Export Citation
  • RojasB.DevillechabrolleJ.EndlerJ. (2014a). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. — Biol. Lett. 10: 20140193.

    • Search Google Scholar
    • Export Citation
  • RojasB.RautialaP.MappesJ. (2014b). Differential detectability of polymorphic warning signals under varying light environments. — Behav. Process. 109: 164-172.

    • Search Google Scholar
    • Export Citation
  • RudhA. (2013). Loss of conspicuous colouration has co-evolved with decreased body size in populations of poison dart frogs. — Evol. Ecol. 27: 755-767.

    • Search Google Scholar
    • Export Citation
  • RuxtonG.D.SherratT.N.SpeedM.P. (2004). Avoiding attack: the evolutionary ecology of crypsis warning signals and mimicry. — Oxford University PressOxford.

    • Search Google Scholar
    • Export Citation
  • SaporitoR.A.DonnellyM.A.JainP.GarraffoH.M.SpandeT.F.DalyJ.W. (2007a). Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. — Toxicon 50: 757-778.

    • Search Google Scholar
    • Export Citation
  • SaporitoR.A.GarraffoH.M.DonnellyM.A.EdwardsA.L.LonginoJ.T.DalyJ.W. (2004). Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. — Proc. Natl. Acad. Sci. USA 101: 8045-8050.

    • Search Google Scholar
    • Export Citation
  • SaporitoR.A.ZuercherR.RobertsM.GerowK.G.DonnellyM.A. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. — Copeia: 1006-1011.

    • Search Google Scholar
    • Export Citation
  • ServedioM.R.Van DoornG.S.KoopM.FrameA.M.NosilP. (2011). Magic traits in speciation: ‘magic’ but not rare?Trends. Ecol. Evol. 26: 389-397.

    • Search Google Scholar
    • Export Citation
  • SilverstoneP.A. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Science bulletin 21. — Natural History Museum of Los Angeles CountyLos Angeles, CA.

    • Search Google Scholar
    • Export Citation
  • StevensM.RuxtonG.D. (2011). Linking the evolution and form of warning colouration in nature. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 417-426.

    • Search Google Scholar
    • Export Citation
  • StevensM.RuxtonG.D. (2014). Do animal eyespots really mimic eyes?Curr. Zool. 60: 26-36.

  • SummersK.CloughM.E. (2001). The evolution of colouration and toxicity in the poison frog family (Dendrobatidae). — Proc. Natl. Acad. Sci. USA 98: 6227-6232.

    • Search Google Scholar
    • Export Citation
  • SummersK.SymulaR.CloughM.CroninT. (1999). Visual mate choice in poison frogs. — Proc. R. Soc. Lond. B Biol. 266: 2141-2145.

  • SummersK.CroninT.W.KennedyT. (2003). Variation in spectral reflectance among populations of Dendrobates pumilio, the strawberry poison frog, in the Bocas del Toro Archipelago, Panama. — J. Biogeogr. 30: 35-53.

    • Search Google Scholar
    • Export Citation
  • SvádováK.ExnerováA.ŠtysP.LandováE.ValentaJ.FučikováA.SochaR. (2009). Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. — Anim. Behav. 77: 327-336.

    • Search Google Scholar
    • Export Citation
  • SymulaR.SchulteR.SummersK. (2001). Molecular phylogenetic evidence for mimetic radiation in Peruvian frogs supports a Müllerian mimicry hypothesis. — Proc. Roy. Soc. Lond. B: Biol. Sci. 268: 2415-2421.

    • Search Google Scholar
    • Export Citation
  • Systat (2007). SYSTAT version 12.0 for Windows. — SYSTAT Software San Jose CA.

  • ValkonenJ.K.NokelainenO.NiskanenM.KilpimaaJ.BjorklundM.MappesJ. (2012). Variation in predator species abundance can cause variable selection pressure on warning signaling prey. — Ecol. Evol. 2: 1971-1976.

    • Search Google Scholar
    • Export Citation
  • Vidal-CorderoJ.M.Moreno-RuedaG.López-OrtaA.Marfil-DazaC.Ros-SantaellaJ.L.Ortiz-SánchezF.J. (2012). Brighter-coloured paper wasps (Polistes dominula) have larger poison glands. — Front. Zool. 9: 20.

    • Search Google Scholar
    • Export Citation
  • WangI.J.ShafferH.B. (2008). Rapid colour evolution in an aposematic species: a phylogenetic analysis of colour variation in the strikingly polymorphic strawberry poison-dart frog. — Evolution 62: 2742-2759.

    • Search Google Scholar
    • Export Citation
  • WillinkB.García-RodríguezA.BolañosF.PröhlH. (2014). The interplay between multiple predators and prey colour divergence. — Biol. J. Linn. Soc. 113: 580-589.

    • Search Google Scholar
    • Export Citation
  • WolfJ.B.W.LindelJ.BackströmN. (2010). Speciation genetics: current status and evolving approaches. — Phil. Trans. Roy. Soc. B: Biol. Sci. 365: 1717-1733.

    • Search Google Scholar
    • Export Citation

Figures

  • View in gallery

    (A) Geographic location of the two study sites in Pará State, Brazil. (B) At ICMBio station, on the west bank of the Anapu River, the native colour of A. galactonotus is bright orange. At Village of Brabo, at the east bank of the Anapu River, specimens are light-blue. The area highlighted in (A) represents the geographic distribution of A. galactonotus according to Hoogmoed & Avila-Pires (2012) and our data. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Reflectance spectra demonstrating that the wax models do not reflect UV light and in that respect are similar to A. galactonotus. Shadows represent standard error. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Bite marks by birds upon paraffin wax models. (A) Paraffin wax models used to characterize bird bite marks, (B) ripe papaya fruits collected with evidence of avian bites and (C) bird marks registered on models from the field experiments. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Bite frequency from different categories of predator on paraffin models that represent the paraffin phenotype and the two aposemantic phenotypes (blue and orange) of Adelphobatus galactonotus at the two study localities. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 111 109 14
Full Text Views 226 226 1
PDF Downloads 9 9 2
EPUB Downloads 0 0 0