Aposematic colouration deters visually oriented predators because conspicuous signals are easier to detect and associate with unpalatability. Consequently, brightly coloured prey that are novel are predicted to be preyed on more than those with bright but typical colours. Here we evaluated whether predatory bias is associated with the colour differences observed at two different localities for a large, conspicuously coloured and poisonous Amazonian frog, Adelphobates galactonotus. At each locality predation experiments were carried out using frog models of two naturally occurring colours of the study species (blue and orange) and a control (brown). We found no evidence that novel colours were more vulnerable to predation than local colours. These results do not therefore support our hypothesis that predatory bias explains the geographic variation of colour in A. galactonotus.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amézquita A., Castro L., Arias M., González M., Esquivel C. (2013). Field but not lab paradigms support generalization by predators of aposematic polymorphic prey: the Oophaga histrionica complex. — Evol. Ecol. 27: 769-782.
Bezzerides A.L., McGraw K.J., Parker R.S., Husseini J. (2007). Elytra colour as a signal of chemical defense in the Asian ladybird beetle Harminia axyridis. — Behav. Ecol. Sociobiol. 61: 1401-1408.
Blanco G., Bertellotti M. (2002). Differential predation by mammals and birds: implications for egg-colour polymorphism in a nomadic breeding seabird. — Biol. J. Linn. Soc. 75: 137-146.
Blount J.D., Rowland H.M., Drijfhout F.P., Endler J.A., Inger R., Sloggett J.J., Hurst G.D.D., Hodgson D.J., Speed M.P. (2012). How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. — Funct. Ecol. 26: 334-342.
Chouteau M., Angers B. (2011). The role of predators in maintaining the geographic organization of aposematic signals. — Am. Nat. 178: 810-817.
Comeault A.A., Noonan B.P. (2011). Spatial variation in the fitness of divergent aposematic phenotypes of the poison frog, Dendrobates tinctorius. — J. Evol. Biol. 24: 1374-1379.
Cortesi F., Cheney K.L. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. — J. Evol. Biol. 23: 1509-1518.
Cott H.B. (1940). Adaptive colouration in animals. — Methuen & Co, London.
Coyne J.A., Orr H.A. (2004). Speciation. — Sinauer Associates, Sunderland, MA.
Cummings M.E., Crothers L.R. (2013). Interacting selection diversifies warning signals in a polytypic frog: an examination with the strawberry poison frog. — Evol. Ecol. 27: 693-710.
Darst C.R., Cummings M.E. (2006). Predator learning favours mimicry of a less-toxic model in poison frogs. — Nature 440: 208-211.
Despland E., Simpson S.J. (2005). Food choices of solitarious and gregarious locusts reflect cryptic and aposematic antipredator strategies. — Anim. Behav. 69: 471-479.
Endler J.A. (1988). Frequency-dependent predation, crypsis and aposematic colouration. — Phil. Trans. Roy. Soc. B: Biol. Sci. 319: 505-523.
Endler J.A. (1991). Interactions between predators and prey. — In: Behavioural ecology an evolutionary approach ( Krebs J.R., Davies N.B., eds). Blackwell, Oxford, p. 169-196.
Endler J.A. (1993). The colour of light in forests and its implications. — Ecol. Monogr. 63: 1-27.
Endler J.A., Mappes J. (2004). Predator mixes and the conspicuousness of aposematic signals. — Am. Nat. 163: 532-547.
Farallo V.R., Forstner M.R.J. (2012). Predation and maintenance of colour polymorphism in a habitat specialist squamate. — PLoS ONE 7: e30316.
Forsman A., Appelqvist S. (1999). Experimental manipulation reveals differential effects of colour pattern on survival in male and female pygmy grasshoppers. — J. Evol. Biol. 12: 391-401.
Gamberale G., Tullberg B.S. (1998). Aposematism and gregariousness: the combined effect of group size and signal repellence. — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 889-894.
Grill C.P., Moore A.J. (1998). Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. — Oecologia 114: 274-282.
Harvey P.H., Bull J.J., Pemberton M., Paxton R.J. (1982). The evolution of aposematic colouration in distasteful prey: a family model. — Am. Nat. 119: 710-719.
Hegna R.H., Saporito R.A., Gerow K.G., Donnelly M.A. (2011). Contrasting colours in an aposematic frog do not affect predation. — Ann. Zool. Fenn. 48: 29-38.
Hegna R.H., Saporito R.A., Donnelly M.A. (2012). Not all colours are equal: predation and colour polytypism in the aposematic poison frog Oophaga pumilio. — Evol. Ecol. 27: 831-845.
Hoogmoed M.S., Avila-Pires T.C.S. (2012). Inventory of colour polymorphism in populations of Dendrobates galactonotus (Anura: Dendrobatidae), a poison frog endemic to Brazil. — Phyllomedusa 11: 95-115.
Husak J.F., Macedonia J.M., Fox S.F., Sauceda R.C. (2006). Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. — Ethology 112: 572-580.
Jiggins C., Naisbit R.E., Coe R.L., Mallet J. (2001). Reproductive isolation caused by colour pattern mimicry. — Nature 411: 302-305.
Joron M., Wynne I.R., Lamas G., Mallet J. (1999). Variable selection and the coexistence of multiple mimetic forms of the butterfly Heliconius numata. — Evol. Ecol. 13: 721-754.
Kapan D.D. (2001). Three butterfly system provides a field test of Müllerian mimicry. — Nature 409: 338-340.
Lambert S.M., Geneva A.J., Mahler D.L., Glor R.E. (2013). Using genomic data to revisit an early example of reproductive character displacement in Haitian Anolis lizards. — Mol. Ecol. 22: 3981-3995.
Lindstedt C., Eager H., Ihalainen E., Kahilainen A., Stevens M., Mappes J. (2011). Direction and strength of selection by predators for the colour of the aposematic wood tiger moth. — Behav. Ecol. 22: 580-587.
Lindstedt C., Lindström L., Mappes J. (2008). Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? — Anim. Behav. 75: 1703-1713.
Lindstedt C., Lindström L., Mappes J. (2009). Thermoregulation constrains effective warning signal expression. — Evolution 63: 469-478.
Lindstedt C., Talsma J.H.R., Ihalainen E., Lindström L., Mappes J. (2010). Diet quality affects warning colouration indirectly: excretion costs in a generalist herbivore. — Evolution 64: 68-78.
Lindström L., Alatalo R.V., Mappes J., Riipi M., Vertainen L. (1999). Can aposematic signals evolve by gradual change? — Nature 397: 249-251.
Maan M.E., Cummings M.E. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. — Evolution 62: 2334-2345.
Maan M.E., Cummings M.E. (2012). Poison frog colours are honest signals of toxicity, particularly for bird predators. — Am. Nat. 179: E1-E14.
Maia R., Eliason C.M., Bitton P.-P., Doucet S.M., Shawkey M.D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. — Methods Ecol. Evol. 4: 906-913.
Mallet J., Joron M. (1999). Evolution of diversity in warning colouration and mimicry: polymorphisms, shifting balance, and speciation. — Annu. Rev. Ecol. Syst. 30: 201-233.
Marek P.E., Bond J.E. (2009). A Müllerian mimicry ring in Appalachian millipedes. — Proc. Natl. Acad. Sci. 106: 9755-9760.
Melin A.D., Fedigan L.M., Hiramatsu C., Sendall C.L., Kawamura S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. — Anim. Behav. 73: 205-214.
Mochida K. (2011). Combination of local selection pressures drives diversity in aposematic signals. — Evol. Ecol. 25: 1017-1028.
Myers C.W., Daly J.W. (1983). Dart-poison frogs. — Sci. Am. 248: 96-105.
Nokelainen O., Valkonen J., Lindstedt C., Mappes J. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. — J. Anim. Ecol. 83: 598-605.
Noonan B.P., Comeault A.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. — Biol. Lett. 5: 51-54.
Nores M. (2000). Species richness in the Amazonian bird fauna from an evolutionary perspective. — Emmu 100: 419-430.
Orr H.A., Turelli M. (2001). The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. — Evolution 55: 1085-1094.
Oxford G.S., Gillespie R.G. (1998). Evolution and ecology of spider colouration. — Annu. Rev. Entomol. 43: 619-643.
Paluh D.J., Hantak M.M., Saporito R.A. (2014). A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. — J. Herpetol. 48: 249-254.
Presgraves D.C. (2010). The molecular evolutionary of basis formation. — Nature Rev. Genet. 11: 175-180.
R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna. Available online at http://www.R-project.org/.
Reynolds R.G., Fitzpatrick B.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. — Evolution 61: 2253-2259.
Richards-Zawacki C.L., Cummings M.E. (2011). Intraspecific reproductive character displacement in a polymorphic poison dart frog, Dendrobates pumilio. — Evolution 65: 259-267.
Richards-Zawacki C.L., Yeager J., Bart H.P.S. (2013). No evidence for differential survival or predation between sympatric colour morphs of an aposematic poison frog. — Evol. Ecol. 27: 783-795.
Rojas B., Devillechabrolle J., Endler J. (2014a). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. — Biol. Lett. 10: 20140193.
Rojas B., Rautiala P., Mappes J. (2014b). Differential detectability of polymorphic warning signals under varying light environments. — Behav. Process. 109: 164-172.
Rudh A. (2013). Loss of conspicuous colouration has co-evolved with decreased body size in populations of poison dart frogs. — Evol. Ecol. 27: 755-767.
Ruxton G.D., Sherrat T.N., Speed M.P. (2004). Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. — Oxford University Press, Oxford.
Saporito R.A., Donnelly M.A., Jain P., Garraffo H.M., Spande T.F., Daly J.W. (2007a). Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. — Toxicon 50: 757-778.
Saporito R.A., Garraffo H.M., Donnelly M.A., Edwards A.L., Longino J.T., Daly J.W. (2004). Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. — Proc. Natl. Acad. Sci. USA 101: 8045-8050.
Saporito R.A., Zuercher R., Roberts M., Gerow K.G., Donnelly M.A. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. — Copeia: 1006-1011.
Servedio M.R., Van Doorn G.S., Koop M., Frame A.M., Nosil P. (2011). Magic traits in speciation: ‘magic’ but not rare? — Trends. Ecol. Evol. 26: 389-397.
Silverstone P.A. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Science bulletin 21. — Natural History Museum of Los Angeles County, Los Angeles, CA.
Stevens M., Ruxton G.D. (2011). Linking the evolution and form of warning colouration in nature. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 417-426.
Stevens M., Ruxton G.D. (2014). Do animal eyespots really mimic eyes? — Curr. Zool. 60: 26-36.
Summers K., Clough M.E. (2001). The evolution of colouration and toxicity in the poison frog family (Dendrobatidae). — Proc. Natl. Acad. Sci. USA 98: 6227-6232.
Summers K., Symula R., Clough M., Cronin T. (1999). Visual mate choice in poison frogs. — Proc. R. Soc. Lond. B Biol. 266: 2141-2145.
Summers K., Cronin T.W., Kennedy T. (2003). Variation in spectral reflectance among populations of Dendrobates pumilio, the strawberry poison frog, in the Bocas del Toro Archipelago, Panama. — J. Biogeogr. 30: 35-53.
Svádová K., Exnerová A., Štys P., Landová E., Valenta J., Fučiková A., Socha R. (2009). Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. — Anim. Behav. 77: 327-336.
Symula R., Schulte R., Summers K. (2001). Molecular phylogenetic evidence for mimetic radiation in Peruvian frogs supports a Müllerian mimicry hypothesis. — Proc. Roy. Soc. Lond. B: Biol. Sci. 268: 2415-2421.
Systat (2007). SYSTAT version 12.0 for Windows. — SYSTAT Software, San Jose, CA.
Valkonen J.K., Nokelainen O., Niskanen M., Kilpimaa J., Bjorklund M., Mappes J. (2012). Variation in predator species abundance can cause variable selection pressure on warning signaling prey. — Ecol. Evol. 2: 1971-1976.
Vidal-Cordero J.M., Moreno-Rueda G., López-Orta A., Marfil-Daza C., Ros-Santaella J.L., Ortiz-Sánchez F.J. (2012). Brighter-coloured paper wasps (Polistes dominula) have larger poison glands. — Front. Zool. 9: 20.
Wang I.J., Shaffer H.B. (2008). Rapid colour evolution in an aposematic species: a phylogenetic analysis of colour variation in the strikingly polymorphic strawberry poison-dart frog. — Evolution 62: 2742-2759.
Willink B., García-Rodríguez A., Bolaños F., Pröhl H. (2014). The interplay between multiple predators and prey colour divergence. — Biol. J. Linn. Soc. 113: 580-589.
Wolf J.B.W., Lindel J., Backström N. (2010). Speciation genetics: current status and evolving approaches. — Phil. Trans. Roy. Soc. B: Biol. Sci. 365: 1717-1733.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 692 | 109 | 11 |
Full Text Views | 285 | 14 | 1 |
PDF Views & Downloads | 98 | 33 | 3 |
Aposematic colouration deters visually oriented predators because conspicuous signals are easier to detect and associate with unpalatability. Consequently, brightly coloured prey that are novel are predicted to be preyed on more than those with bright but typical colours. Here we evaluated whether predatory bias is associated with the colour differences observed at two different localities for a large, conspicuously coloured and poisonous Amazonian frog, Adelphobates galactonotus. At each locality predation experiments were carried out using frog models of two naturally occurring colours of the study species (blue and orange) and a control (brown). We found no evidence that novel colours were more vulnerable to predation than local colours. These results do not therefore support our hypothesis that predatory bias explains the geographic variation of colour in A. galactonotus.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 692 | 109 | 11 |
Full Text Views | 285 | 14 | 1 |
PDF Views & Downloads | 98 | 33 | 3 |