Variation of mutual colour ornaments of king penguins in response to winter resource availability

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We studied the influence of marine resources during a year of abundance and another of extreme scarcity, on sexually selected ornaments of the king penguin (Aptenodytes patagonicus), a seabird with striking coloured ornaments in both sexes. Displaying birds started their breeding cycle with similar mean body mass each year, but both sexes had significantly larger yellow/orange auricular patches in the year of abundant resources. Colours of the auricular patches and breast were more pure in the good year, and both UV and yellow/orange colours of beak spots were brighter. Comparison of the mating process suggested lower levels of choosiness in both sexes during the unfavourable year, perhaps in order to pair more quickly and partly compensate for a marked delay in breeding initiation. Our results suggest that the expression of sexual traits may substantially vary under different environmental conditions, a predication of some models of mate choice and sexual selection.

Variation of mutual colour ornaments of king penguins in response to winter resource availability

in Behaviour

Sections

References

AnderssonM. (1994). Sexual selection. — Princeton University PressPrinceton, NJ.

BarbraudC.WeimerskirchH. (2006). Antarctic birds breed later in response to climate change. — Proc. Natl. Acad. Sci. USA 103: 6248-6251.

ButlerM.W.ToomeyM.B.McGrawK.J. (2011). How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. — Behav. Ecol. Sociobiol. 65: 401-413.

CandolinU.HeuscheleJ. (2008). Is sexual selection beneficial during adaptation to environmental change?Trends Ecol. Evol. 23: 446-452.

CornwallisC.K.UllerT. (2010). Towards an evolutionary ecology of sexual traits. — Trends Ecol. Evol. 25: 145-152.

DescampsS.Gauthier-ClercM.GenderJ.P.MahoY.L. (2002). The annual breeding cycle of unbanded king penguins Aptenodytes patagonicus on Possession Island (Crozet). — Avian Sci. 2: 1-12.

DobsonF.S.CouchouxC.JouventinP. (2011). Sexual selection on a coloured ornament in king penguins. — Ethology 117: 872-879.

DobsonF.S.NolanP.M.NicolausM.BajzakC.CoquelA.S.JouventinP. (2008). Comparison of color and body condition between early and late breeding king penguins. — Ethology 114: 925-933.

DrespB.JouventinP.LangleyK. (2005). Ultraviolet reflecting photonic microstructures in the King Penguin beak. — Biol. Lett. 1: 310-313.

DrespB.LangleyK. (2006). Fine structural dependence of ultraviolet reflections in the King Penguin beak horn. — Anatom. Rec. A 288: 213-222.

FridolfssonA.K.EllegrenH. (1999). A simple and universal method for molecular sexing of non-ratite birds. — J. Avian Biol. 30: 116-121.

Gauthier-ClercM.Le MahoY.GendnerJ.P.DurantJ.HandrichY. (2001). State-dependent decisions in long-term fasting king penguins, Aptenodytes patagonicus, during courtship and incubation. — Anim. Behav. 62: 661-669.

GomezD. (2006). AVICOL a program to analyse spectrometric data. — Last update October 2011. Free executable available online at http://sites.google.com/site/avicolprogram/.

HillG.E. (1990). Female house finches prefer colorful males — sexual selection for a condition-dependent trait. — Anim. Behav. 40: 563-572.

HillG.E. (1991). Plumage coloration is a sexually selected indicator of male quality. — Nature 350: 337-339.

HillG.E. (1992). Proximate basis of variation in carotenoid pigmentation in male house finches. — Auk 109: 1-12.

HillG.E. (2002). A red bird in a brown bag: the function and evolution of colorful plumage in the house finch. — Oxford University PressNew York, NY.

HillG.E.MontgomerieR. (1994). Plumage color signals nutritional condition in the house finch. — Proc. Roy. Soc. Lond. B: Biol. Sci. 258: 47-52.

HillG.E.InouyeC.Y.MontgomerieR. (2002). Dietary carotenoids predict plumage coloration in wild house finches. — Proc. Roy. Soc. Lond. B: Biol. Sci. 269: 1119-1124.

JouventinP. (1982). Visual and vocal signals in penguins their evolution and adaptive characters. — Paul PareyBerlin.

JouventinP.NolanP.M.DobsonF.S.NicolausM. (2008). Coloured patches influence pairing rate in King Penguins. — Ibis 150: 193-196.

JouventinP.NolanP.M.OrnborgJ.DobsonF.S. (2005). Ultraviolet beak spots in King and Emperor penguins. — Condor 107: 144-150.

KeddarI.AndrisM.BonadonnaF.DobsonF.S. (2013). Male-biased mate competition in king penguin trio parades. — Ethology 119: 389-396.

KirkpatrickM.PriceT.ArnoldS.J. (1990). The Darwin–Fisher theory of sexual selection in monogamous birds. — Evolution 44: 180-193.

KokkoH.JennionsM.D.BrooksR. (2006). Unifying and testing models of sexual selection. — Annu. Rev. Ecol. Evol. Syst. 37: 43-66.

KraaijeveldK.Kraaijeveld-SmitF.J.L.KomdeurJ. (2007). The evolution of mutual ornamentation. — Anim. Behav. 74: 657-677.

MartinezA.BarbosaA. (2010). Are pterins able to modulate oxidative stress?Theor. Chem. Acc. 127: 485-492.

MassaroM.DavisL.S.DarbyJ.T. (2003). Carotenoid-derived ornaments reflect parental quality in male and female yellow-eyed penguins (Megadyptes antipodes). — Behav. Ecol. Sociobiol. 55: 169-175.

McGrawK.J. (2006a). Mechanics of carotenoid-based coloration. — In: Bird colorationVol. 1 ( HillG.E.McGrawK.J. eds). Harvard University PressCambridge, MA p.  177-240.

McGrawK.J. (2006b). Mechanics of uncommon colors: pterins, porphyrins, and psittacofulvins. — In: Bird colorationVol. 1 ( HillG.E.McGrawK.J. eds). Harvard University PressCambridge, MA p.  354-398.

McGrawK.J.WakamatsuK.ItoS.NolanP.M.JouventinP.DobsonF.S.AusticR.E.SafranR.J.SieffermanL.M.HillG.E.ParkerR. (2004). You can’t judge a pigment by its color: carotenoid and melanin content of yellow and brown feathers in swallows, bluebirds, penguins, and domestic chickens. — Condor 106: 390-395.

McGrawK.J.ToomeyM.B.NolanP.M.MorehouseN.I.MassaroM.JouventinP. (2007). A description of unique fluorescent yellow pigments in penguin feathers. — Pigment Cell Res. 20: 301-304.

McGrawK.J.MassaroM.RiversT.J.MatternT. (2009). Annual, sexual, size- and condition-related variation in the colour and fluorescent pigment content of yellow crest-feathers in Snares Penguins (Eudyptes robustus). — Emu 109: 93-99.

MontgomerieR. (2006). Analysing colors. — In: Bird colorationVol. 1 ( HillG.E.McGrawK.J. eds). Harvard University PressCambridge, MA p.  90-147.

NicolS.PaulyT.BindoffN.L.WrightS.ThieleD.HosieG.W.StruttonP.G.WoehlerE. (2000). Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. — Nature 406: 504-507.

NolanP.M.DobsonF.S.DrespB.JouventinP. (2006). Immunocompetence is signalled by ornamental colour in king penguins, Aptenodytes patagonicus. — Evol. Ecol. Res. 8: 1325-1332.

NolanP.M.DobsonF.S.NicolausM.KarelsT.J.McGrawK.J.JouventinP. (2010). Mutual mate choice for colorful traits in king penguins. — Ethology 116: 635-644.

OlssonO. (1995). Timing and body-reserve adjustments in king penguin reproduction. — PhD thesis Uppsala University Uppsala.

OlssonO. (1996). Seasonal effects of timing and reproduction in the king penguin: a unique breeding cycle. — J. Avian Biol. 27: 7-14.

OlssonO. (1997). Effects of food availability on fledging condition and post-fledging survival in king penguin chicks. — Polar Biol. 18: 161-165.

OlssonO.BrodinA. (1997). Changes in King Penguin breeding cycle in response to food availability. — Condor 99: 994-997.

OlssonO.BonnedahlJ.Anker-NilssenP. (2001). Mate switching and copulation behaviour in king penguins. — J. Avian Biol. 32: 139-145.

OlssonO.van der JeugdH.P. (2002). Survival in king penguins Aptenodytes patagonicus: temporal and sex-specific effects of environmental variability. — Oecologia 132: 509-516.

ParkinsonC.L. (2002). Trends in the length of the Southern Ocean sea-ice season, 1979–1999. — Ann. Glaciol. 34: 435-440.

PeronC.WeimerskirchH.BostC.A. (2012). Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 2515-2523.

PincemyG.DobsonF.S.JouventinP. (2009). Experiments on colour ornaments and mate choice in king penguins. — Anim. Behav. 78: 1247-1253.

PincemyG.DobsonF.S.JouventinP. (2010). Homosexual mating displays in penguins. — Ethology 116: 1210-1216.

R Core Team (2012). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna.

SokalR.R.RohlfF.J. (1995). Biometry: the principles and practices of statistics in biological research3rd edn.W.H. FreemanNew York, NY.

StonehouseB. (1960). The king penguin Aptenodytes patagonica of South Georgia. 1. Breeding behaviour and development. — Her Majesty’s Stationery OfficeLondon.

ThomasD.B.McGoverinC.M.McGrawK.J.JamesH.F.MaddenO. (2013). Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. — J. Roy. Soc. Interface 10: 20121065.

WeimerskirchH.StahlJ.C.JouventinP. (1992). The breeding biology and population dynamics of king penguins Aptenodytes patagonicus on the Crozet Islands. — Ibis 134: 107-117.

WilcoxR.R.TianT.S. (2011). Measuring effect size: a robust heteroscedastic approach for two or more groups. — J. Appl. Stat. 38: 1359-1368.

Figures

  • View in gallery

    Example of reflectance spectra of the beak spot, auricular patch, brown part of the breast patch, and yellow part of the breast patch. Note the separation between the bell-shaped UV reflecting part of the beak spot (300–499 nm) and the orange reflecting part of the beak spot (500–700 nm).

  • View in gallery

    Effect size statistics of inter-annual differences in hue of colour ornaments. Vertical dashed lines indicate the separation between null (<0.15), small (<0.35), medium (<0.50) and large (>0.50) effect size according to the robust d criterion (see Materials and methods for statistical details).

  • View in gallery

    Effect size statistics of inter-annual differences in saturation of colour ornaments. Vertical dashed lines indicate the separation between null (<0.15), small (<0.35), medium (<0.50) and large (>0.50) effect size according to the robust d criterion (see Materials and methods for statistical details).

  • View in gallery

    Effect size statistics of inter-annual differences in brightness of colour ornaments. Vertical dashed lines indicate the separation between null (<0.15), small (<0.35), medium (<0.50) and large (>0.50) effect size according to the robust d criterion (see Materials and methods for statistical details).

  • View in gallery

    Probability of producing an egg for definitive pairs and of members involved into temporary pairs that found a new partner, during the favourable year and during the unfavourable year. Data include only pairs for which the laying date was known. See Materials and methods for statistical details. Mean delay for temporary pairs ± SE to find a new mate = 13.7 days ± 1.1; and to produce an egg = 17.8 days ± 1.9. Mean delay for definitive pairs to produce an egg ± SE in unfavourable year = 8.6 days ± 0.25; and in favourable year = 9.2 days ± 0.32.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 19 19 5
Full Text Views 9 9 9
PDF Downloads 2 2 2
EPUB Downloads 0 0 0