Social status influences responses to unfamiliar conspecifics in a cooperatively breeding fish

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


In group living animals, individuals may visit other groups. The costs and benefits of such visits for the members of a group will depend on the attributes and intentions of the visitor, and the social status of responding group members. Using wild groups of the cooperatively breeding cichlid fish (Neolamprologus pulcher), we compared group member responses to unfamiliar ‘visiting’ conspecifics in control groups and in experimentally manipulated groups from which a subordinate the same size and sex as the visitor was removed. High-ranking fish were less aggressive towards visitors in removal groups than in control groups; low-ranking subordinates were more aggressive in the removal treatment. High-ranking females and subordinates the same size and sex as the visitor responded most aggressively toward the visitor in control groups. These results suggest that visitors are perceived as potential group joiners, and that such visits impose different costs and benefits on current group members.



AlexanderR.D. (1974). The evolution of social behavior. — Annu. Rev. Ecol. Syst. 5: 325-383.

Balshine-EarnS.NeatF.C.ReidH.TaborskyM. (1998). Paying to stay or paying to breed? Field evidence for direct benefits of helping behavior in a cooperatively breeding fish. — Behav. Ecol. 9: 432-438.

BalshineS.LeachB.NeatF.ReidH.TaborskyM.WernerN. (2001). Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). — Behav. Ecol. Sociobiol. 50: 134-140.

BergmüllerR.TaborskyM. (2005). Experimental manipulation of helping in a cooperative breeder: helpers ‘pay to stay’ by pre-emptive appeasement. — Anim. Behav. 69: 19-28.

BergmüllerR.TaborskyM. (2007). Adaptive behavioural syndromes due to strategic niche specialization. — BMC Ecol. 7: 12. DOI:10.1186/1472-6785-7-12.

BergmüllerR.HegD.PeerK.TaborskyM. (2005). Extended safe havens and between-group dispersal of helpers in a cooperatively breeding cichlid. — Behaviour 142: 1643-1667.

BrouwerL.HegD.TaborskyM. (2005). Experimental evidence for helper effects in a cooperatively breeding cichlid. — Behav. Ecol. 16: 667-673.

BuchnerA.S.SlomanK.A.BalshineS. (2004). The physiological effects of social status in the cooperatively breeding cichlid Neolamprologus pulcher. — J. Fish Biol. 65: 1080-1095.

ChenC.C.FernaldR.D. (2011). Visual information alone changes behavior and physiology during social interactions in a cichlid fish (Astatotilapia burtoni). — PLoS One 6: e20313.

CockburnA. (1998). Evolution of helping behavior in cooperatively breeding birds. — Annu. Rev. Ecol. Syst. 29: 141-177.

CoeckelberghsV. (1975). Territorial, spawning and parental behavior of Lamprologus brichardi Poll, 1974 (Pisces, Cichlidae). — Ann. Soc. Roy. Zool. Belg. 105: 73-86.

CôtéI.M.PoulinR. (1995). Parasitism and group size in social animals: a meta-analysis. — Behav. Ecol. 6: 159-165.

DesjardinsJ.K.StiverK.A.FitzpatrickJ.L.BalshineS. (2008). Differential responses to territory intrusions in cooperatively breeding fish. — Anim. Behav. 75: 595-604.

DesjardinsJ.K.FitzpatrickJ.L.StiverK.A.Van Der KraakG.J.BalshineS. (2011). Lunar and diurnal cycles in reproductive physiology and behavior in a natural population of cooperatively breeding fish. — J. Zool. 285: 66-73.

DeyC.J.ReddonA.R.O’ConnorC.M.BalshineS. (2013). Network structure is related to social conflict in a cooperatively breeding fish. — Anim. Behav. 85: 395-402.

DeyC.J.TanQ.Y.J.O’ConnorC.M.ReddonA.R.CaldwellJ.R.BalshineS. (2015). Dominance network structure across reproductive contexts in the cooperatively breeding cichlid fish Neolamprologus pulcher. — Curr. Zool. 61: 45-54.

FischerS.ZöttlM.GroenewoudF.TaborskyB. (2014). Group size-dependent punishment of idle subordinates in a cooperative breeder where helpers pay to stay. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281, DOI:10.1098/rspb.2014.0184.

FosterW.A.TreherneJ.E. (1981). Evidence of the dilution effect in the selfish herd from fish predation on a marine insect. — Nature 293: 466-467.

GarvyK.A.HellmannJ.K.LigockiI.Y.ReddonA.R.Marsh-RolloS.E.HamiltonI.M.BalshineS.O’ConnorC.M. (2015). Sex and social status affect territorial defence in a cooperatively breeding cichlid fish, Neolamprologus savoryi. — Hydrobiology 748: 75-85.

GirmanD.J.MillsM.G.L.GeffenE.WayneR.K. (1997). A molecular genetic analysis of social structure, dispersal, and interpack relationships of the African wild dog (Lycaon pictus). — Behav. Ecol. Sociobiol. 40: 187-198.

GoodallJ. (1986). The chimpanzees of Gombe: patterns of behavior. — Harvard University Press, Cambridge, MA.

GoymannW.WingfieldJ.C. (2004). Allostatic load, social status and stress hormones: the costs of social status matter. — Anim. Behav. 67: 591-602.

GrantnerA.TaborskyM. (1998). The metabolic rates associated with resting, and the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). — J. Comp. Physiol. B 168: 427-433.

GreenwoodP.J. (1980). Mating systems, philopatry and dispersal in birds and mammals. — Anim. Behav. 28: 1140-1162.

GriesserM.NystrandM.EggersS.EkmanJ. (2008). Social constraints limit dispersal and settlement decisions in a group-living bird species. — Behav. Ecol. 19: 317-324.

HaleyM.P.MüllerC.R. (2002). Territorial behaviour of beaugregory damselfish (Stegastes leucostictus) in response to egg predators. — J. Exp. Mar. Biol. Ecol. 273: 151-159.

HamiltonI.M.DillL.M. (2003). The use of territorial gardening versus kleptoparasitism by a subtropical reef fish (Kyphosus cornelii) is influenced by territory defendability. — Behav. Ecol. 14: 561-568.

HamiltonI.M.HegD.BenderN. (2005). Size differences within a dominance hierarchy influence conflict and help in a cooperatively breeding cichlid. — Behaviour 142: 1591-1613.

HebblewhiteM.PletscherD.H. (2002). Effects of elk group size on predation by wolves. — Can. J. Zool. 80: 800-809.

HegD.BrouwerL.BacharZ.TaborskyM. (2005). Large group size yields group stability in the cooperatively breeding cichlid Neolamprologus pulcher. — Behaviour 142: 11-12.

HellmannJ.K.HamiltonI.M. (2014). The presence of neighbors influences defense against predators in a cooperatively breeding cichlid. — Behav. Ecol. 25: 386-391.

HertE. (1985). Individual recognition of helpers by the breeders in the cichlid fish Lamprologus brichardi (Poll, 1974). — Z. Tierpsychol. 68: 313-325.

HickK.ReddonA.R.O’ConnorC.M.BalshineS. (2014). Strategic and tactical fighting decisions in cichlid fishes with divergent social systems. — Behaviour 151: 47-71.

ItzkowitzM. (1990). Heterospecific intruders, territorial defense and reproductive success in the beaugregory damselfish. — J. Exp. Mar. Biol. Ecol. 140: 49-59.

IwataE.ManboJ. (2013). Territorial behaviour reflects sexual status in groups of false clown anemonefish (Amphiprion ocellaris) under laboratory conditions. — Acta Ethol. 16: 97-103.

JordanL.A.AvolioC.Herbert-ReadJ.E.KrauseJ.RubensteinD.I.WardA.J.W. (2010). Group structure in a restricted entry system is mediated by both resident and joiner preferences. — Behav. Ecol. Sociobiol. 64: 1099-1106.

KalasK. (1975). Zur Ethologie von Lamprologus brichardi (Pisces, Cichlidae) Trewavas und Poll, 1952 unter besonderer Berücksichtigung des Sozialverhaltens. — MSc thesis, Zoological Institute of the University of Giessen, Giessen.

KitchenD.M.BeehnerJ.C. (2007). Factors affecting individual participation in group-level aggression among non-human primates. — Behaviour 144: 1551-1581.

KomdeurJ. (1992). Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. — Nature 358: 493-495.

KoningsA. (2005). Back to nature guide to Tanganyika cichlids. — Cichlid Press, El Paso, TX.

KrauseJ.RuxtonG.D. (2002). Living in groups. — Oxford University Press, Oxford.

Le VinA.L.MableB.K.ArnoldK.E. (2010). Kin recognition via phenotype matching in a cooperatively breeding cichlid, Neolamprologus pulcher. — Anim. Behav. 79: 1109-1114.

LewisR.J. (2008). Social influences on group membership in Propithecus verreauxi verreauxi. — Int. J. Primatol. 29: 1249-1270.

LimaS.L.DillL.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640.

MagurranA.E.SeghersB.H. (1991). Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. — Behaviour 118: 214-234.

MartelG.DillL.M. (1995). Influence of movement by coho salmon (Oncorhynchus kisutch) parr on their detection by common mergansers (Mergus merganser). — Ethology 99: 139-149.

PackerC.ScheelD.PuseyA.E. (1990). Why lions form groups: food is not enough. — Am. Nat. 136: 1-19.

RannalaB.H.BrownC.R. (1994). Relatedness and conflict over optimal group size. — Trends Ecol. Evol. 9: 117-119.

ReddonA.R.VoisinM.R.MenonN.Marsh-RolloS.E.WongM.Y.L.BalshineS. (2011a). Rules of engagement for resource contests in a social fish. — Anim. Behav. 82: 93-99.

ReddonA.R.BalkD.BalshineS. (2011b). Sex differences in group-joining decisions in social fish. — Anim. Behav. 82: 229-234.

ReddonA.R.O’ConnorC.M.Marsh-RolloS.E.BalshineS.GozdowskaM.KulczykowskaE. (2015). Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish. — Roy. Soc. Open Sci. 2: 140072.

RimmerD.M.PowerG. (1978). Feeding response of Atlantic salmon (Salmo salar) alevins in flowing and still water. — J. Fish. Board Can. 35: 329-332.

RohwerS. (1978). Parent cannibalism of offspring and egg raiding as a courtship strategy. — Am. Nat. 112: 429-440.

RoodJ.P. (1987). Dispersal and intergroup transfer in the dwarf mongoose. — In: Mammalian dispersal patterns. The effects of social structure on population genetics ( Chepko-SadeB.D.HalpinZ.T., eds). University of Chicago Press, Chicago, IL, p.  85-103.

RoodJ.P. (1990). Group size, survival, reproduction, and routes to breeding in dwarf mongooses. — Anim. Behav. 39: 566-572.

SchaffnerC.M.FrenchJ.A. (1997). Group size and aggression: ‘recruitment incentives’ in a cooperatively breeding primate. — Anim. Behav. 54: 171-180.

ShermanP.W. (1985). Alarm calls of Belding’s ground squirrels to aerial predators: nepotism or self-preservation?Behav. Ecol. Sociobiol. 17: 313-323.

SopinkaN.M.FitzpatrickJ.L.DesjardinsJ.K.StiverK.A.Marsh-RolloS.E.BalshineS. (2009). Liver size reveals social status in the African cichlid Neolamprologus pulcher. — J. Fish Biol. 75: 1-16.

StiverK.A.FitzpatrickJ.DesjardinsJ.K.BalshineS. (2006). Sex differences in rates of territory joining and inheritance in a cooperatively breeding cichlid fish. — Anim. Behav. 71: 449-456.

StiverK.A.DesjardinsJ.K.FitzpatrickJ.L.NeffB.QuinnJ.S.BalshineS. (2007). Evidence for size and sex-specific dispersal in a cooperatively breeding cichlid fish. — Mol. Ecol. 16: 2974-2984.

StiverK.A.FitzpatrickJ.L.DesjardinsJ.K.BalshineS. (2009). Mixed parentage in Neolamprologus pulcher groups. — J. Fish Biol. 74: 1129-1135.

TaborskyM. (1984). Broodcare helpers in the cichlid fish Lamprologus Brichardi — their costs and benefits. — Anim. Behav. 32: 1236-1252.

TaborskyM. (1985). Breeder-helper conflict in a cichlid fish with broodcare helpers: an experimental analysis. — Behaviour 95: 45-75.

TaborskyM. (1994). Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the study of behavior, Vol. 23. — Elsevier Science, Amsterdam.

TaborskyM.HertE.von SiemensM.StoerigP. (1986). Social behaviour of Lamprologus species: functions and mechanisms. — Ann. Kon. Mus. Mid. Afr. Zool. Wetensch. 251: 7-11.

TaborskyM.GrantnerA. (1998). Behavioural time-energy budgets of cooperatively breeding Neolamprologus pulcher (Pisces: Cichlidae). — Anim. Behav. 56: 1375-1382.

TrewavasE. (1983). Tilapine fishes of the genera Sarotherodon, Oreochromis and Kanakilia. — British Museum of Natural History, London.

von SiemensM. (1990). Broodcare or egg cannibalism by parents and helpers in Neolamprologus brichardi (Poll, 1986) (Pisces: Cichlidae): a study on behavioural mechanisms. — Ethology 84: 60-80.

VucetichJ.A.PetersonR.O.WaiteT.A. (2004). Raven scavenging favours group foraging in wolves. — Anim Behav. 67: 1117-1126.

WernerN.Y.BalshineS.LeachB.LotemA. (2003). Helping opportunities and space segregation in cooperatively breeding cichlids. — Behav. Ecol. 14: 749-756.

WongM.Y.L.BalshineS. (2011a). The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. — Biol. Rev. 86: 511-530.

WongM.Y.L.BalshineS. (2011b). Fight for your breeding right: hierarchy re-establishment predicts aggression in a social queue. — Biol. Lett. 7: 190-193.

ZackS.RabenoldK.N. (1989). Assessment, age and proximity in dispersal contests among cooperative wrens: field experiments. — Anim. Behav. 38: 235-247.

ZöttlM.ChapuisL.FreiburghausM.TaborskyM. (2013a). Strategic reduction of help before dispersal in a cooperative breeder. — Biol. Lett. 9: 1-4.

ZöttlM.FrommenJ.G.TaborskyM. (2013b). Group size adjustment to ecological demand in a cooperative breeder. — Proc. Roy. Soc. Lond. B: Biol. Sci. 280: 1-9.


  • Boxplots of counts of (a) aggressive displays and (b) overt attacks towards the stimulus fish in control groups (N=22). Values for non-focal subordinates represent the sum of all subordinate group members smaller than the focal individual. Dominant males performed significantly fewer displays than any other group members (1a; p=0.001), and dominant females and size-matched subordinates performed significantly more attacks than dominant males or non-focal subordinates (1b; p<0.001). Asterisks indicate significantly different values (α=0.05). Data is presented as boxplots and shows the median and quartiles values, as well as minimum and maximum values excluding >1.5 times the interquartile range (marked with circles; diamonds indicate values > 3 times the interquartile range).

    View in gallery
  • Boxplots of aggressive acts towards the stimulus fish; (a) overt attacks by dominant females, (b) aggressive displays by dominant females and (c) threat displays by dominant males in control groups (N=22) and removal treatments (N=21). Dominant females performed significantly fewer attacks (1a; p<0.001) towards stimulus fish regardless of their sex after a removal, and dominant males performed fewer displays towards male stimulus fish after a removal (1c; p=0.046). Values > 1.5 times the interquartile range are marked with circles, and diamonds indicate values > 3 times the interquartile range.

    View in gallery
  • Boxplots of (a) displays and (b) overt attacks towards the stimulus fish by non-focal subordinate group members in the removal treatment (N=21) and control groups (N=22). Non-focal subordinates performed more displays (1a; p=0.044) and attacks (1b; p=0.004) towards stimulus fish after a removal had occurred. Values > 1.5 times the interquartile range are marked with circles, and diamonds indicate values > 3 times the interquartile range.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 13
Full Text Views 11 11 9
PDF Downloads 9 9 6
EPUB Downloads 0 0 0