Liquid sand burrowing and mucus utilisation as novel adaptations to a structurally-simple environment in Octopus kaurna Stranks, 1990

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Cephalopods are often celebrated as masters of camouflage, but their exploitation of the soft-sediment habitats that dominate the ocean floor has demanded other anti-predator strategies. Previous research has identified a small number of cephalopods capable of burying into sand and mud, but the need to directly access the water column for respiration has restricted them to superficial burying. Here, we report on the first known sub-surface burrowing in the cephalopods, by Octopus kaurna, a small benthic species that uses advanced sand-fluidisation and adhesive mucus for sediment manipulation. This burrowing strategy appears linked to easily fluidised sediments as shown in experimental trials in three size-grades of sediment. While the selective pressures that drove evolution of this behaviour are unknown, its identification enriches our understanding of the possible life-history traits and functional role of mucus in other benthic octopus species living in soft-sediment environments.

Liquid sand burrowing and mucus utilisation as novel adaptations to a structurally-simple environment in Octopus kaurna Stranks, 1990

in Behaviour

Sections

References

BrownA.C.TruemanE.R. (1994). The burrowing rate index. — J. Mollusc. Stud. 60: 354-355.

DaviesM.S.HawkinsS.J. (1998). Mucus from marine molluscs. — Adv. Mar. Biol. 34: 1-71.

DorganK.M. (2015). The biomechanics of burrowing and boring. — J. Exp. Biol. 218: 176-183.

FinnJ.K.TregenzaT.NormanM.D. (2009). Defensive tool use in a coconut-carrying octopus. — Curr. Biol. 19: R1069-R1070.

GansC. (1975). Tetrapod limblessness: evolution and functional corollaries. — Am. Zool. 15: 455-467.

HanlonR. (2007). Cephalopod dynamic camouflage. — Curr. Biol. 17: R400-R404.

HanlonR.T.MessengerJ.B. (1996). Cephalopod behaviour. — Cambridge University PressCambridge.

HanlonR.T.ConroyL.-A.ForsytheJ.W. (2008). Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. — Biol. J. Linn. Soc. 93: 23-38.

HanlonR.T.ChiaoC.C.MäthgerL.M.BarbosaA.BureschK.C.ChubbC. (2009). Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 364: 429-437.

HuffardC.L. (2007). Ethogram of Abdopus aculeatus (d’Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioural characters inform octopodid taxomony and systematics?J. Mollusc. Stud. 73: 185-193.

JonesC.G.LawtonJ.H.ShachakM. (1997). Positive and negative effects of organisms as physical ecosystem engineers. — Ecology 78: 1946-1957.

LiaoJ.-X.LuC.-C. (2009). A new species of Cistopus (Cephalopoda: Octopodidae) from Taiwan and morphology of mucous pouches. — J. Mollusc. Stud. 75: 269-278.

MatherJ.A. (1986). Sand digging in Sepia officinalis: assessment of a cephalopod mollusc’s “fixed” behaviour pattern. — J. Comp. Psychol. 100: 315-320.

MerilaitaS. (2003). Visual background complexity facilitates the evolution of camouflage. — Evolution 57: 1248-1254.

NormanM.D. (2001). New octopus species from Queensland, Australia. — Mem. Queensland Mus. 46: 677-690.

NormanM.D.HochbergF.G. (2005). The mimic octopus (Thaumoctopus mimicus n. gen. et sp.), a new octopus from the Tropical Indo-West Pacific (Cephalopoda: Octopodidae). — Mollusc. Res. 25: 57-70.

SnelgroveP.V.R. (1999). Getting to the bottom of marine biodiversity: sedimentary habitats. — BioScience 49: 129-138.

SnelgroveP.V.R.ButmanC.A. (1994). Animal-sediment relationships revisited: cause versus effect. — Oceanograph. Mar. Biol. Ann. Rev. 32: 111-177.

StanleyS.M. (1970). Shell form and life habits in the Bivalvia. — Geol. Soc. Am. Mem. 125: 1-296.

StranksT.N. (1990). Three new species of Octopus (Mollusca: Cephalopoda) from south-eastern Australia. — Mem. Mus. Victoria 50: 457-465.

StranksT.N.NormanM.D. (1992). Review of the Octopus australis complex from Australia and New Zealand, with description of a new species (Mollusca: Cephalopoda). — Mem. Mus. Victoria 53: 345-373.

TruemanE.R. (1967). The dynamics of burrowing in Ensis (Bivalvia). — Proc. Roy. Soc. Lond. B: Biol. Sci. 166: 459-476.

TruemanE.R.AnsellA.D. (1969). The mechanics of burrowing into soft substrata by marine animals. — Oceanograph. Mar. Biol. Annu. Rev. 7: 315-366.

VoightJ.R. (1994). Morphological variation in shallow-water octopuses (Mollusca: Cephalopoda). — J. Zool. Lond. 232: 471-504.

von BoletzkyS. (1996). Cephalopods burying in soft substrata: agents of bioturbation?Mar. Ecol. 17: 77-86.

von BoletzkyS.von BoletzkyM. (1970). Das eingraben in sand bei Sepiola und Sepietta (Mollusca, Cephalopoda). — Rev. Suisse Zool. 77: 536-548.

von ByernJ.KlepalW. (2006). Adhesive mechanisms in cephalopods: a review. — Biofouling 22: 329-338.

WatlingL.ThielM. (2013). Functional morphology and diversity. — Oxford University PressOxford.

WentworthC.K. (1922). A scale of grade and class terms for clastic sediments. — J. Geol. 30: 377-392.

WinterA.G.DeitsR.L.H.HosoiA.E. (2012). Localized fluidization burrowing mechanics of Ensis directus. — J. Exp. Biol. 215: 2072-2080.

WinterA.G.DeitsR.L.H.DorschD.S.SlocumA.H.HosoiA.E. (2014). Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. — Bioinspir. Biomimet. 9: 1-11.

Figures

  • View in gallery

    Drawings and photographs of burrowing in O. kaurna: (a) Octopus kaurna injects water into the sediment; (b) sediment becomes fluidised and the octopus moves downwards; (c) O. kaurna forms a mucus-lined sub-surface cavity and respiratory chimney; (d) arms are retracted and normal ventilation commences. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Burrowing Rate Index of Octopus kaurna showing medians (black line: 14.89, 9.52 and 4.72, respectively) and individual octopuses (grey lines) in three experimental sediment classes: ‘fine-to-medium’ (<500 μm); ‘coarse’ (500–1000 μm); and ‘very coarse’ (1000–2000 μm) sand.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 21
Full Text Views 14 14 14
PDF Downloads 2 2 2
EPUB Downloads 0 0 0