An ethogram of the Humboldt squid Dosidicus gigas Orbigny (1835) as observed from remotely operated vehicles

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Many cephalopods can rapidly change their external appearance to produce multiple body patterns. Body patterns are composed of various components, which can include colouration, bioluminescence, skin texture, posture, and locomotion. Shallow water benthic cephalopods are renowned for their diverse and complex body pattern repertoires, which have been attributed to the complexity of their habitat. Comparatively little is known about the body pattern repertoires of open ocean cephalopods. Here we create an ethogram of body patterns for the pelagic squid, Dosidicus gigas. We used video recordings of squid made in situ via remotely operated vehicles (ROV) to identify body pattern components and to determine the occurrence and duration of these components. We identified 29 chromatic, 15 postural and 6 locomotory components for D. gigas, a repertoire rivalling nearshore cephalopods for diversity. We discuss the possible functional roles of the recorded body patterns in the behavioural ecology of this open ocean species.

An ethogram of the Humboldt squid Dosidicus gigas Orbigny (1835) as observed from remotely operated vehicles

in Behaviour

Sections

References

AdamoS.A.EhgoetzK.SangsterC.WhitehorneI. (2006). Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis. — Biol. Bull. 210: 192-200.

AdamoS.A.BrownW.M.KingA.J.MatherD.L.MatherJ.A.ShoemakerK.L.WoodJ.B. (2000). Agonistic and reproductive behaviours of the cuttlefish Sepia officinalis in a semi-natural environment. — J. Mollusc. Stud. 66: 417-419.

BarbosaA.MathgerL.M.ChubbC.ChiaoC.-C.FlorioC.HanlonR.T. (2007). Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. — J. Exp. Biol. 210: 1139-1147.

BurfordB.P.RobisonB.H.SherlockR.E. (2014). Behaviour and mimicry in the juvenile and subadult life stages of the mesopelagic squid Chiroteuthis calyx. — J. Mar. Biol. Ass. UK 95: 1221-1235.

BushS.RobisonB.H.CaldwellR. (2009). Behaving in the dark: locomotor, chromatic, postural, and bioluminescent behaviors of the deep-sea squid Octopoteuthis deletron Young 1972. — Biol. Bull. 216: 7-22.

ChiaoC.-C.HanlonR.T. (2001). Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. — J. Exp. Biol. 204: 2119-2125.

CloneyR.A.BroccoS.L. (1983). Chromatophore organs, reflector cells, iridocytes and leucophores in cephalopods. — Am. Zool. 23: 581-592.

DawkinsM.S. (1993). Are there general principles of signal design?Phil. Trans. Roy. Soc. Lond. 340: 251-255.

EndlerJ.A. (1993). Some general comments on the evolution and design of animal communication systems. — Phil. Trans. Roy. Soc. Lond. 340: 215-225.

FergusonG.P.MessengerJ.B. (1991). A countershading reflex in cephalopods. — Proc. Roy. Soc. Lond. B: Biol. Sci. 243: 63-67.

FieldJ.C.BaltzK.PhilipsA.J.WalkerW.A. (2007). Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. — Calif. Coop. Oceanic Fish. Invest. Rep. 48: 131.

FoyleT.P.O’dorR.K. (1988). Predatory strategies of squid (Illex illecebrosus) attacking small and large fish. — Mar. Freshw. Behav. Physiol. 13: 155-168.

GillyW.F.MarkaidaU.BaxterC.H.BlockB.A.BoustanyA.ZeidburgL.D.ReisenbichlerK.RobisonB.H.BazzinoG.SalinasC.A. (2006). Vertical and horizontal migratons by the jumbo squid Dosidicus gigas revealed by electronic tagging. — Mar. Ecol. Progr. Ser. 324: 1-17.

GillyW.F.ZeidbergL.D.BoothJ.A.T.StewartJ.S.MarshallG.AbernathyK.BellL.E. (2012). Locomotion and behavior of Humboldt squid, Dosidicus gigas, in relation to natural hypoxia in the Gulf of California, Mexico. — J. Exp. Biol. 215: 3175-3190.

Godfrey-SmithP. (2002). Environmental complexity and the evolution of cognition. — In: The evolution of intelligence ( SternbergR.KaufmanJ. eds). Lawrence ErlbaumMahwah, NJ p.  233-249.

HaddockS.H.D.MolineM.A.CaseJ.F. (2010). Bioluminescence in the sea. — Annu. Rev. Mar. Sci. 2: 443-493.

HallK.C.HanlonR.T. (2002). Principle features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). — Mar. Biol. 140: 533-545.

HanlonR.T. (1982). The functional organization of chromatophores and iridescent cells in the body patterning of Loligo plei (Cephalopoda: Myopsida). — Malacologia 23: 89-119.

HanlonR.T. (1988). Behavioral and body patterning characters useful in taxonomy and field identification of cephalopods. — Malacologia 29: 247-265.

HanlonR.T.MessengerJ.B. (1996). Cephalopod behavior. — Cambridge University PressCambridge.

HanlonR.T.SmaleM.J.SauerW.H.H. (1994). An ethogram of body patterning behavior in the squid Loligo vulgaris reynaudii on spawning grounds in South Africa. — Biol. Bull. 187: 363-372.

HanlonR.T.MaxwellM.R.ShasharN.LoewE.R.BoyleK.L. (1999). An ethogram of body patterning behavior in the biomedically and commercially valuable squid Loligo pealei off Cape Cod, Massachusetts. — Biol. Bull. 197: 49-62.

HovingH.-J.T.VecchioneM. (2012). Mating behavior of a deep-sea squid revealed by in situ videography and the study of archived specimens. — Biol. Bull. 223: 263-267.

HovingH.-J.T.BushS.L.RobisonB.H. (2011). A shot in the dark: same-sex sexual behaviour in a deep-sea squid. — Biol. Lett. rsbl20110680.

HuntJ.C. (1996). The behavior and ecology of midwater cephalopods from Monterey Bay: submersible and laboratory observations. — University of CaliforniaLos Angeles, CA.

HuntJ.C.SeibelB.A. (2000). Life history of Gonatus onyx (Cephalopoda: Teuthoidea): ontogenetic changes in habitat, behavior and physiology. — Mar. Biol. 136: 543-552.

HuntJ.C.ZeidbergL.D.HamnerW.M.RobisonB.H. (2000). The behaviour of Loligo opalescens (Mollusca: Cephalopoda) as observed by a remotely operated vehicle (ROV). — J. Mar. Biol. Ass. UK 80: 873-883.

JantzenT.M.HavenhandJ.N. (2003). Reproductive behavior in the squid Sepioteuthis australis from South Australia: interactions on the spawning grounds. — Biol. Bull. 204: 305-317.

JohnsenS. (2002). Cryptic and conspicuous coloration in the pelagic environment. — Proc. Roy. Soc. Lond. B: Biol. Sci. 269: 243-256.

KierW.LeeuwenJ. (1997). A kinematic analysis of tentacle extension in the squid Loligo pealei. — J. Exp. Biol. 200: 41-53.

KiltieR.A. (1988). Countershading: universally deceptive or deceptively universal?Trends Ecol. Evol. 3: 21-23.

KuboderaT.MoriK. (2005). First-ever observations of a live giant squid in the wild. — Proc. Roy. Soc. Lond. B: Biol. Sci. 272: 2583-2586.

KuboderaT.KoyamaY.MoriK. (2007). Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 1029-1034.

LangridgeK.BroomM.OsorioD. (2007). Selective signalling by cuttlefish to predators. — Curr. Biol. 17: R1044-R1045.

LehnerP. (1996). Handbook of ethological methods. — Cambridge University PressCambridge.

LohrmannK.B. (2008). Subcutaneous photophores in the jumbo squid Dosidicus gigas (d’Orbigny, 1835) (Cephalopoda: Ommastrephidae). — Rev. Biol. Mar. Oceanogr. 43: 275-284.

MathgerL.M.HanlonR.T. (2007). Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. — Cell Tissue Res. 329: 179-186.

MaurisE. (1989). Colour patterns and body postures related to prey capture in Sepiola affinis (Mollusca: Cephalopoda). — Mar. Freshw. Behav. Physol. 14: 189-200.

MoynihanM.RodanicheA.F. (1982). The behavior and natural history of the Caribbean Reef squid Sepioteuthis sepioidea with a consideration of social signal and defensive patterns for difficult and dangerous environments. — Paul PareyBerlin.

NesisK.N. (1983). Dosidicus gigas. — In: Cephalopod life cyclesVol. 1: species accounts ( BoyleP.R. ed.). Academic PressLondon p.  215-231.

NigmatullinC.M.NesisK.ArkhipkinA. (2001). A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). — Fish. Res. 54: 9-19.

PackardA.HochbergF. (1977). Skin patterning in Octopus and other genera. — Symp. Zool. Soc. Lond. 38: 191-231.

PackardA.SandersG.D. (1971). Body patterns of Octopus vulgaris and the maturation of the response to disturbance. — Anim. Behav. 19: 780-790.

PagelM. (1999). Inferring the historical patterns of biological evolution. — Nature 401: 877-884.

PorteiroF.M.MartinsH.R.HanlonR.T. (1990). Some observations on the behaviour of adult squids, Loligo forbesi, in captivity. — J. Mar. Biol. Ass. UK 70: 459-472.

RobisonB.H. (1992). Midwater research methods with MBARI’s ROV. — Mar. Technol. Soc. J. 26: 32-39.

RoperC.F.E.VecchioneM. (1997). In situ observations test hypotheses of functional morphology in Mastigoteuthis (Cephalopoda, Oegopsida). — Vie Milieu 47: 87-93.

RosaR.SeibelB.A. (2010). Metabolic physiology of the Humboldt squid, Dosidicus gigas: implications for vertical migration in a pronounced oxygen minimum zone. — Progr. Oceanograph. 86: 72-80.

RosenH.GillyW.BellL.AbernathyK.MarshallG. (2015). Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package. — J. Exp. Biol. 218: 265-275.

SeibelB.A. (2011). Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. — J. Exp. Biol. 214: 326-336.

SeibelB.A. (2015). Environmental physiology of the jumbo squid, Dosidicus gigas: implications for changing climate. — Am. Malacol. Bull. 33: 161-173.

SeibelB.A.HäfkerN.S.TrübenbachK.ZhangJ.TessierS.N.PörtnerH.-O.RosaR.StoreyK.B. (2014). Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone. — J. Exp. Biol. 217: 2555-2568.

Stuart-FoxD.MoussalliA. (2009). Camouflage, communication and thermoregulation: lessons from colour changing organisms. — Phil. Trans. Roy. Soc. Lond. 364: 463-470.

SweeneyA.HaddockS.JohnsenS. (2007). Comparative visual acuity of coleoid cephalopods. — Integr. Comp. Biol. 47: 808.

TruebloodL.A. (2010). Physiology and behavior of the jumbo squid Dosidicus gigas. — University of Rhode IslandKingston.

TruebloodL.A.SeibelB.A. (2013). The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: oxygen consumption rates and critical oxygen partial pressures. — Deep Sea Research Part II: Topical Studies in Oceanography 95: 218-224.

TruebloodL.A.SeibelB.A. (2014). Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid. — J. Exp. Biol. 217: 2710-2716.

VecchioneM.RoperC.F.E. (1991). Cephalopods observed from submersibles in the western North Atlantic. — Bull. Mar. Sci. 49: 1-2.

WarrantE.J.LocketN.A. (2004). Vision in the deep sea. — Biol. Rev. 79: 671-712.

WebbP.W. (1982). Avoidance responses of fathead minno to strikes by four teleost predators. — J. Comp. Physiol. 147: 371-378.

WidderE.A. (2010). Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. — Science 328: 704-708.

YoungR.E. (1983). Oceanic bioluminescence: an overview of general functions. — Bull. Mar. Sci. 33: 829-845.

ZeidbergL.D.RobisonB.H. (2007). Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. — Proc. Natl. Acad. Sci. USA 104: 12948-12950.

ZylinskiS.JohnsenS. (2011). Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. — Curr. Biol. 17: 400-404.

ZylinskiS.OsorioD.ShohetA. (2009). Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. — Phil. Trans. Roy. Soc. Lond. 364: 439-448.

ZylinskiS.HowM.OsorioD.HanlonR.T.MarshallN. (2011). To be seen or to hide: visual characteristics of body patterns for camouflage and communication in the Australian giant cuttlefish Sepia apama. — Am. Nat. 177: 681-690.

Figures

  • View in gallery

    Stills taken from ROV video footage to illustrate postural components of Dosidicus gigas: (A) strike, arms only; (B) arms spread; (C) dorsal arm arch; (D) J-curl; (E) droopy arms; (F) strike glide; (G) prey handling; (H) strike with tentacles; (I) stiff arm, no keel; (J) trailing tentacles, keeled; (K) stiff arms, keeled; (L) loose arms, keeled. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    In order to determine if we have a reasonably complete ethogram for D. gigas we have plotted the cumulative time (%) versus rank order of behaviours by frequency of occurrence. As described in Lehner (1998), when a plot of cumulative time (%) against rank order of behaviours by frequency of occurrence reaches an asymptote, the ethogram can be considered to contain the study organism’s entire repertoire of behaviours.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 37 37 19
Full Text Views 74 74 48
PDF Downloads 7 7 5
EPUB Downloads 0 0 0