Chemosensory discrimination of conspecifics in the juvenile yellow-spotted river turtle Podocnemis unifilis

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Chelonians are very promising models to explore the role of chemical communication in social contexts. However, it still remains unknown how chemical signals may influence most behavioural patterns in turtles. In this study, we examined whether juvenile yellow-spotted river turtles (Podocnemis unifilis) use chemical cues released into water by other conspecifics to orientate towards them. To test our hypothesis, we compared the behavioural response (i.e., activity level and latency time) of juveniles when exposed to chemical stimuli obtained from other conspecifics (i.e., other juveniles and adult females), as compared to their response in clean water (i.e., the baseline). The results obtained in the study showed that juvenile P. unifilis increased their activity in response to chemical cues of female adult conspecifics. These findings suggest that juvenile turtles may chemically orientate themselves towards adult females during migratory processes. Efficient detection of conspecific chemical cues by juveniles is necessary for particular individuals to aggregate before migrating to habitats with more abundant food resources. Our study provides a framework for future research that should disentangle the role of chemical cues in mass migration of freshwater turtles.

Sections

References

AragónP.MassotM.GaspariniJ.ClobertJ. (2006). Socially acquired information from chemical cues in the common lizard, Lacerta vivipara. — Anim. Behav. 72: 965-974.

BalensieferD.C.VogtR.C. (2006). Diet of Podocnemis unifilis (Testudines, Podocnemididae) during the dry season in the Mamirauá Sustainable development Reserve, Amazonas, Brazil. — Chelonian Conserv. Biol. 5: 312-317.

BullC.M.GriffinC.L.PerkinsM.V. (1999). Some properties of a pheromone allowing individual recognition from the scats of an Australian lizard, Egernia striolata. — Acta Ethol. 2: 35-42.

CarazoP.FontE.Forteza-BehrendtE.DesfilisE. (2009). Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate?Anim. Cogn. 12: 463-470.

CostanzoJ.P. (1989). Conspecific scent trailing by garter snakes (Thamnophis sirtalis) during autumn: further evidence for use of pheromones in den location. — J. Chem. Ecol. 15: 2531-2538.

CostanzoK.MonteiroA. (2007). The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 845-851.

De SouzaR.R.VogtR.C. (1994). Incubation temperature influences sex and hatchling size in the neotropical turtle Podocnemis unifilis. — J. Herpetol. 29: 453-464.

EscalonaT.EngstromT.N.HernandezO.E.BockB.C.VogtR.C.ValenzuelaN. (2009). Population genetics of the endangered South American freshwater turtle, Podocnemis unifilis, inferred from microsatellite DNA data. — Conserv. Genet. 10: 1683-1696.

Fachín TeránA.Von MülhenE.M. (2003). Reproducción de la taricaya Podocnemis unifilis troschel 1848 (testudines: podocnemididae) en la várzea del medio solimões, Amazonas, Brasil. — Ecol. Aplic. 2: 125-132.

FadoolD.A.WachiowiakM.BrannJ.H. (2001). Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle). — J. Exp. Biol. 204: 4199-4212.

FerraraC.R.VogtR.C.Sousa-LimaR.S. (2013). Turtle vocalizations as the first evidence of posthatching parental care in chelonians. — J. Comp. Psychol. 127: 24-32.

Ferreira JúniorP.D.CastroP.T.A. (2010). Nesting ecology of Podocnemis expansa (Schweigger, 1812) and Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae) in the Javaés River, Brazil. — Braz. J. Biol. 70: 85-94.

FisherH.S.RosenthalG.G. (2006). Female swordtail fish use chemical cues to select well-fed mates. — Anim. Behav. 72: 721-725.

FontE.DesfilisE. (2002). Chemosensory recognition of familiar and unfamiliar conspecifics by juveniles of the Iberian wall lizard Podarcis hispanica. — Ethology 108: 319-330.

GramapurohitN.P.VeeranagoudarD.K.MulkeegoudraS.V.ShanbhagB.A.SaidapurS.K. (2006). Kin recognition in Bufo scaber tadpoles: ontogenetic changes and mechanism. — J. Ethol. 24: 267-274.

HalpernM. (1992). Nasal chemical senses in reptiles: structure and function. — In: Hormones, brain, and behavior, Biology of the Reptilia, Vol. 18 ( GansC.CrewsD., eds). University of Chicago Press, Chicago, IL, p.  114-228.

HatanakaT.MatsuzakiO. (1993). Odor responses of the vomeronasal system in reeve turtle, Geoclemys reevesii. — Brain. Behav. Evol. 41: 183-186.

HurstJ.L.PayneC.E.NevisonC.M.MarieA.D.HumphriesR.E.RobertsonD.H.CavaggioniA.BeynonR.J. (2001). Individual recognition in mice mediated by major urinary proteins. — Nature 414: 631-634.

IbáñezA.LópezP.MartínJ. (2012). Discrimination of conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. — Anim. Behav. 83: 1107-1113.

IbáñezA.MarzalA.LópezP.MartínJ. (2013). Boldness and body size of male Spanish terrapins affect their responses to chemical cues of familiar and unfamiliar males. — Behav. Ecol. Sociobiol. 67: 541-548.

KrauseE.T.KrügerO.KohlmeierP.CaspersB.A. (2012). Olfactory kin recognition in a songbird. — Biol. Lett. 8: 327-329.

LeMasterM.P.MasonR.T. (2002). Variation in a female sexual attractiveness pheromone controls male mate choice in garter snakes. — J. Chem. Ecol. 28: 1269-1285.

LewisC.H.MolloyS.F.ChambersR.M.DavenportJ. (2007). Response of common musk turtles (Sternotherus odoratus) to intraspecific chemical cues. — J. Herpetol. 41: 349-353.

LópezP.MartínJ. (2002). Chemical rival recognition decreases aggression levels in male Iberian wall lizards, Podarcis hispanica. — Behav. Ecol. Sociobiol. 51: 461-465.

MahmoudI. (1968). Feeding behavior in kinosternid turtles. — Herpetologica 24: 300-305.

MartínJ.LópezP. (2011). Pheromones and reproduction in Reptiles. — In: Hormones and reproduction of Vertebrates, Vol. 3: Reptiles ( NorrisD.O.LopezK.H., eds). Academic Press, San Diego, CA.

MartinP.BatesonP. (1986). Measuring behavior. An introductory guide. — Cambridge University Press, Cambridge.

MasonR.T.ParkerM.R. (2010). Social behavior and pheromonal communication in reptiles. — J. Comp. Physiol. A 196: 729-749.

MuñozA. (2004). Chemo-orientation using conspecific chemical cues in the stripe-necked terrapin (Mauremys leprosa). — J. Chem. Ecol. 30: 519-530.

PáezV.P.BockB.C. (2004). Pre- and post-hatching factors affecting juvenile growth rates in the yellow-spotted river turtle (Podocnemis unifilis). — Actual. Biol. 26: 137-151.

Polo-CaviaN.LópezP.MartínJ. (2009). Interspecific differences in chemosensory responses of freshwater turtles: consequences for competition between native and invasive species. — Biol. Invasions 11: 431-440.

PoschadelJ.R.Meyer-LuchtY.PlathM. (2006). Response to chemical cues from conspecifics reflects male mating preference for large females and avoidance of large competitors in the European pond turtle, Emys orbicularis. — Behaviour 143: 569-587.

QuinnV.S.GravesB.M. (1998). Home pond discrimination using chemical cues in Chrysemys picta. — J. Herpetol. 32: 457-461.

Rueda AlmonacidJ.V.CarrJ.L.MittermeierR.A.Rodríguez MahechaJ.V.MastR.B.VogtR.C.RhodinA.G.de la Ossa VelázquezJ.RuedaJ.N.Goettsch MittermeierC. (2007). Las Tortugas y Cocodrilianos de los Paises Andinos del Trópico. — Conservación Internacional, Bogotá.

ShineR.PhillipsB.WayeH.LeMasterM.MasonR.T. (2003). Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates. — Behav. Ecol. Sociobiol. 54: 162-166.

SiegelS.CastellanN.J.Jr. (1988). Non parametric statistics for the behavioral sciences, 2nd edn.McGraw-Hill, New York, NY.

SwaneyW.KendalJ.CaponH.BrownC.LalandK.N. (2001). Familiarity facilitates social learning of foraging behaviour in the guppy. — Anim. Behav. 62: 591-598.

TuttleS.E.CarrollD.M. (2005). Movements and behavior of hatchling wood turtles (Glyptemys insculpta). — Northeast. Nat. 12: 331-348.

VogtR.C. (2008). Amazon turtles. — Grafica Biblos, Lima.

WeldonP.J.FlachsbarthB.SchulzS. (2008). Natural products from the integument of nonavian reptiles. — Nat. Prod. Rep. 25: 738-756.

WinokurR.M.LeglerJ.M. (1975). Chelonian mental glands. — J. Morphol. 147: 275-291.

WyattT.D. (2003). Pheromones and animal behaviour: communication by smell and taste. — Cambridge University Press, Cambridge.

Figures

  • Experimental aquarium to test for odour discrimination, with three different parts. The tested individual was placed in one of the corners of the experimental container aquarium and was allowed to move freely between the parts for one hour.

    View in gallery
  • Mean (± 1SE) of the activity level (a) and the latency times (b) shown by the juveniles in each treatment. Post-hoc comparisons  = p<0.01.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 5
Full Text Views 8 8 8
PDF Downloads 1 1 1
EPUB Downloads 0 0 0