The influence of testosterone on cognitive performance in bonobos and chimpanzees

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Levels of the steroid hormone testosterone have been found to impact diverse features of cognition from spatial memory to decision-making regarding risk, both in humans and other animals. However less is known about whether closely-related species differ in their testosterone-cognition relationships in line with pressures shaping each species’ cognitive evolution. We therefore examined relationships between testosterone and cognition in two-closely related species that differ markedly in their social behaviour, cognition, and patterns of testosterone production: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We presented individuals of both species with a battery of 16 cognitive tasks and determined whether performance on these tasks correlated with average testosterone level. We found that among male chimpanzees, high levels of testosterone correlated with higher performance in numerous tasks, including tasks assessing spatial cognition and physical cognitive abilities more broadly. Meanwhile, in male bonobos we found no correlations between testosterone and performance on the cognitive tasks, and found no correlations in females of either species. Building on prior comparative research, these results suggest that bonobos and chimpanzees differ critically in the proximate mechanisms influencing their cognitive capacities, and that in particular the role of testosterone in shaping behaviour and cognition differs dramatically between the two species.

The influence of testosterone on cognitive performance in bonobos and chimpanzees

in Behaviour



AlexanderG.M.SonT. (2007). Androgens and eye movements in women and men during a test of mental rotation ability. — Horm. Behav. 52: 197-204.

ApicellaC.L.DreberA.CampbellB.GrayP.B.HoffmanM.LittleA.C. (2008). Testosterone and financial risk preferences. — Evol. Hum. Behav. 29: 384-390.

ArcherJ. (2006). Testosterone and human aggression: an evaluation of the challenge hypothesis. — Neurosci. Biobehav. Rev. 30: 319-345.

AzurmendiA.BrazaF.SorozabalA.GarciaA.BrazaP.CarrerasM.MunozJ.CardasJ.Sanchez-MartinJ. (2005). Cognitive abilities, androgen levels, and body mass index in 5-year-old children. — Horm. Behav. 49: 187-195.

BartosL.SchamsD.BubenikG.A.KotrbaR.TomanekM. (2010). Relationship between rank and plasma testosterone and cortisol in red deer males (Cervus elaphus). — Physiol. Behav. 101: 628-634.

BateupH.BoothA.ShirtcliffE.GrangerD. (2002). Testosterone, cortisol, and women’s competition. — Evol. Hum. Behav. 23: 181-192.

BeehnerJ.Phillips-ConroyJ.WhittenP. (2005). Female testosterone, dominance rank, and aggression in an Ethiopian population of hybrid baboons. — Am. J. Primatol. 67: 101-119.

BurnhamT.C. (2007). High-testosterone men reject low ultimatum game offers. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 2327-2330.

CherrierM.M.AsthanaS.PlymateS.BakerL.MatsumotoA.M.PeskindE.RaskindM.A.BrodkinK.BremnerW.PetrovaA.LaTendresseS.CraftS. (2001). Testosterone supplementation improves spatial and verbal memory in healthy older men. — Neurology 57: 80-88.

DerntlB.WindischbergerC.RobinsonS.Kryspin-ExnerI.GurR.C.MoserE.HabelU. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. — Psychoneuroendocrinology 34: 687-693.

EiseneggerC.HaushoferJ.FehrE. (2011). The role of testosterone in social interaction. — Trends Cogn. Sci. 15: 263-271.

FuxjagerM.MarlerC. (2010). How and why the winner effect forms: influences of contest environment and species differences. — Behav. Ecol. 21: 37-45.

HareB.WobberV.WranghamR. (2012). The self-domestication hypothesis: bonobo psychology evolved due to selection against aggression. — Anim. Behav. 83: 573-585.

HeilbronnerS.RosatiA.StevensJ.HareB.HauserM. (2008). A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos. — Biol. Lett. 4: 246-249.

HerrmannE.CallJ.Hernandez-LloredaM.HareB.TomaselloM. (2007). Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. — Science 317: 1360-1366.

HerrmannE.HareB.CallJ.TomaselloM. (2010). Differences in the cognitive skills of bonobos and chimpanzees. — PLOS One 5: e12438.

HoovenC.ChabrisC.EllisonP.KosslynS. (2004). The relationship of male testosterone to components of mental rotation. — Neuropsychologia 42: 782-790.

JanowskyJ.S.OviattS.K.OrwollE.S. (1994). Testosterone influences spatial cognition in older men. — Behav. Neurosci. 108: 325-332.

LacreuseA.KingH.M.KurdzielL.B.PartanS.R.CaldwellK.M.ChiavettaM.R.MilletteM.M.MeyerJ.S.GrowD.R. (2010). Testosterone may increase selective attention to threat in young male macaques. — Horm. Behav. 58: 854-863.

LacreuseA.GoreH.E.ChangJ.KaplanE.R. (2012). Short-term testosterone manipulations modulate visual recognition memory and some aspects of emotional reactivity in male rhesus monkeys. — Physiol. Behav. 106: 229-237.

LeonardS.T.WinsauerP.J. (2011). The effects of gonadal hormones on learning and memory in male mammals: a review. — Curr. Zool. 57: 543-558.

LuineV.N. (2008). Sex steroids and cognitive function. — J. Neuroendocrinol. 20: 866-872.

MarshallA.HohmannG. (2005). Urinary testosterone levels of wild male bonobos (Pan paniscus) in the Lomako forest, Democratic Republic of Congo. — Am. J. Primatol. 65: 87-92.

MehtaP.H.BeerJ. (2010). Neural mechanisms of the testosterone-aggression relation: the role of orbitofrontal cortex. — J. Cogn. Neurosci. 22: 2357-2368.

MuehlenbeinM.WattsD.WhittenP. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. — Am. J. Primatol. 64: 71-82.

MullerM.LipsonS. (2003). Diurnal patterns of urinary steroid excretion in wild chimpanzees. — Am. J. Primatol. 60: 161-166.

MullerM.WranghamR. (2004). Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. — Anim. Behav. 67: 113-123.

NelsonR. (2000). An introduction to behavioral endocrinology. — Sinauer AssociatesSunderland, MA.

SilvermanI.KastukD.ChoiJ.PhillipsK. (1999). Testosterone levels and spatial ability in men. — Psychoneuroendocrinology 24: 813-822.

SobolewskiM.BrownJ.MitaniJ.C. (2012). Territoriality, tolerance and testosterone in wild chimpanzees. — Anim. Behav. 84: 1469-1474.

StantonS.J.LieningS.H.SchultheissO.C. (2011). Testosterone is positively associated with risk taking in the Iowa Gambling Task. — Horm. Behav. 59: 252-256.

SurbeckM.DeschnerT.SchubertG.WeltringA.HohmannG. (2012). Mate competition, testosterone and intersexual relationships in bonobos, Pan paniscus. — Anim. Behav. 83: 659-669.

van HonkJ.TuitenA.VerbatenR.van den HaanE. (1999). Correlations among salivary testosterone, mood, and selective attention to threat in humans. — Horm. Behav. 36: 17-24.

van WingenG.MatternC.VerkesR.J.BuitelaarJ.FernandezG. (2010). Testosterone reduces amygdala-orbitofrontal cortex coupling. — Psychoneuroendocrinology 35: 105-113.

VolmanI.ToniI.VerhagenL.RoelofsK. (2011). Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. — Cerebr. Cort. 21: 2282-2290.

WilliamsC.L.MeckW.H. (1991). The organizational effects of gonadal-steroids on sexually dimorphic spatial ability. — Psychoneuroendocrinology 16: 155-176.

WingfieldJ.HegnerR.DuftyR.BallG. (1990). The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. — Am. Nat. 136: 829-846.

WirthM.SchultheissO. (2007). Basal testosterone moderates responses to anger faces in humans. — Physiol. Behav. 90: 496-505.

WobberV.HareB. (2011). Psychological health of orphan bonobos and chimpanzees in African sanctuaries. — PLOS One 6: e17147.

WobberV.HareB.MabotoJ.LipsonS.WranghamR.EllisonP. (2010). Differential changes in steroid hormones before competition in bonobos and chimpanzees. — Proc. Natl. Acad. Sci. USA 107: 12457-12462.

WobberV.LipsonS.HareB.WranghamR.EllisonP. (2013). Different ontogenetic patterns of testoterone production reflect divergent male reproductive strategies in chimpanzees and bonobos. — Physiol. Behav. 116-117: 44-53.

WonY.HeyJ. (2005). Divergence population genetics of chimpanzees. — Mol. Biol. Evol. 22: 297-307.

WranghamR.PilbeamD. (2001). African apes as time machines. — In: All apes great and small ( GaldikasB.BriggsN.SheeranL.ShapiroG.GoodallJ. eds). Kluwer Academic/Plenum PublishersNew York, NY p.  5-18.

ZakP.J.KurzbanR.AhmadiS.SwerdloffR.S.ParkJ.EfremidzeL.RedwineK.MorganK.MatznerW. (2009). Testosterone administration decreases generosity in the ultimatum game. — PLOS One 4: 7.


  • View in gallery

    Regression of average log testosterone levels and average performance across 10 physical cognition tasks in (A) chimpanzee males and (B) bonobo males. Each point represents one individual (either a chimpanzee, as depicted by the black diamond, or a bonobo, as depicted by the grey squares), and that individual’s average testosterone level (log-transformed) as well as their average proportion correct across the physical cognition tasks. Regression lines denoting for the relationship between testosterone and proportion correct within the physical cognition division are shown for each species.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 8 8 3
Full Text Views 6 6 6
PDF Downloads 2 2 2
EPUB Downloads 0 0 0