Individual performance in socio-cognitive tasks predicts social behaviour in carrion crows

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The social intelligence hypothesis links the evolution of exceptional cognitive skills to the requirements of complex social systems. Empirical evidence of a connection between cognitive skills and social behaviour on an individual level is lacking. I investigated how cognitive performance in carrion crows correlates with social behaviour. Social behaviour was observed and crows were tested in four tasks previously published elsewhere: qualitative exchange, quantity preference, inequity aversion, heterospecific recognition. I describe correlations between an individuals’ involvement in affiliative and aggressive encounters and performance during these different cognitive tasks. For example, individuals performing better in the qualitative exchange task received more approaches and affiliative interactions. There was a correlation between birds choosing higher quantities during testing and their propensity to initiate aggressive and affiliative interactions with others. Overall these results show a link between social behaviour and individual performance in cognitive tasks.

Individual performance in socio-cognitive tasks predicts social behaviour in carrion crows

in Behaviour



AdolphsR. (1999). Social cognition and the human brain. — Trends Cogn. Sci. 3: 469-479.

AndersonJ.R. (1996). Chimpanzees and capuchin monkeys: comparative cognition. — In: Reaching into thought: the minds of the great apes ( RussonA.E.BardK.A.ParkerS.T. eds). Cambridge University PressCambridge p.  23-56.

AplinL.M.FarineD.R.Morand-FerronJ.SheldonB.C. (2012). Social networks predict patch discovery in a wild population of songbirds. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 4199-4205.

AttonN.HoppittW.WebsterM.M.GalefB.G.LalandK.N. (2012). Information flow through threespine stickleback networks without social transmission. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 4272-4278.

AuerspergA.M.I.von BayernA.M.P.GajdonG.K.HuberL.KacelnikA. (2011). Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. — PloS One 6: e20231.

AureliF.SchaffnerC.M.BoeschC.BearderS.K.CallJ.ChapmanC.A.ConnorR.FioreA.D.DunbarR.I.M.HenziS.P.HolekampK.KorstjensA.H.LaytonR.LeeP.LehmannJ.MansonJ.H.Ramos FernandezG.StrierK.B.van SchaikC.P. (2008). Fission-fusion dynamics: new research frameworks. — Curr. Anthropol. 49: 627-654.

BaglioneV.CanestrariD.MarcosM. (2002). History, environment and social behaviour: experimentally induced cooperative breeding in the carrion crow. — Proc. Roy. Soc. Lond. B: Biol. Sci. 269: 1247-1251.

BaglioneV.CanestrariD.MarcosJ.M.EkmanJ. (2003). Kin selection in cooperative alliances of carrion crows. — Science 300: 1947-1949.

BarrettL. (2003). Primate cognition: from “what now?” to “what if?”Trends Cogn. Sci. 7: 494-497.

BondA.B.KamilA.C.BaldaR.P. (2003). Social complexity and transitive inference in corvids. — Anim. Behav. 65: 479-487.

BugnyarT. (2013). Social cognition in ravens. — Comp. Cogn. Behav. Rev. 8: 1-12.

BugnyarT.HeinrichB. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. — Proc. Roy. Soc. Lond. B: Biol. Sci. 272: 1641-1646.

BugnyarT.KotrschalK. (2002). Observational learning and the raiding of food caches in ravens, Corvus corax: is it “tactical” deception?Anim. Behav. 64: 185-195.

ByrneR.W.WhitenA. (1988). Machiavellian intelligence: social expertise and the evolution of intellect in monkey apes and humans. — Clarendon PressOxford.

ClaytonN.S.EmeryN.J. (2007). The social life of corvids. — Curr. Biol. 17: R652-R656.

ClaytonN.S.DallyJ.M.EmeryN.J. (2007). Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. — Phil. Trans. Roy. Soc. Lond. B 362: 507-522.

CobbS. (1976). The role of social relations in health promotion. — Psychosom. Med. 38: 300-314.

ConnorR.C. (2007). Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. — Phil. Trans. Roy. Soc. Lond. B 362: 587-602.

DallyJ.M.EmeryN.J.ClaytonN.S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): hiding food in the shade. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271(Suppl.): S387-S390.

DasM.PenkeZ.van HooffJ.A.R.A.M. (1998). Postconflict affiliation and stress-related behavior of long-tailed macaque aggressors. — Int. J. Primatol. 19: 53-71.

Daura-JorgeF.G.CantorM.IngramS.N.LusseauD.Simões-LopesP.C. (2012). The structure of a bottlenose dolphin society is coupled to a unique foraging cooperation with artisanal fishermen. — Biol. Lett. 8: 702-705.

DavisH. (1992). Transitive inference in rats (Rattus norvegicus). — J. Comp. Psychol. 106: 342-349.

De KortS.R.EmeryN.J.ClaytonN.S. (2006). Food sharing in jackdaws, Corvus monedula: what, why and with whom?Anim. Behav. 72: 297-304.

DufourV.WascherC.A.F.BraunA.MillerR.BugnyarT. (2012). Corvids can decide if a future exchange is worth waiting for. — Biol. Lett. 8: 201-204.

DunbarR. (1998). The social brain hypothesis. — Evol. Anthropol. 6: 178-190.

DunbarR.I.M.ShultzS. (2007). Evolution in the social brain. — Science 317: 1344-1347.

EmeryN.J. (2006). Cognitive ornithology: the evolution of avian intelligence. — Phil. Trans. Roy. Soc. Lond. B 361: 23-43.

EmeryN.J.SeedA.M.von BayernA.M.P.ClaytonN.S. (2007). Cognitive adaptations of social bonding in birds. — Phil. Trans. Roy. Soc. Lond. B 362: 489-505.

FraserO.N.BugnyarT. (2010). Do ravens show consolation? Responses to distressed others. — PloS One 5: e10605.

FraserO.N.BugnyarT. (2011). Ravens reconcile after aggressive conflicts with valuable partners. — PloS One 6: e18118.

FraserO.N.StahlD.AureliF. (2008). Stress reduction through consolation in chimpanzees. — Proc. Natl. Acad. Sci. USA 105: 8557-8562.

GillanD.J. (1981). Reasoning in the chimpanzee: II. Transitive inference. — J. Exp. Psychol. Anim. B 7: 150-164.

Glutz von BlotzheimU.N. (1985). Handbuch der Vögel Mitteleuropas. — Aula-VerlagWiesbaden.

HareB.TomaselloM. (2005). Human-like social skills in dogs?Trends Cogn. Sci. 9: 439-444.

HarrisA.C.MaddenG.J. (2002). Delay discounting and performance on the prisoner’s dilemma game. — Psychol. Rec. 52: 429-440.

HealyS.D.RoweC. (2007). A critique of comparative studies of brain size. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 453-464.

HeinrichB. (2011). Conflict, cooperation, and cognition in the common raven. — Adv. Stud. Behav. 43: 189-237.

HeyesC.M.GalefB.G.J. (1996). Social learning in animals: the roots of culture. — Academic PressSan Diego, CA.

HillemannF.BugnyarT.KotrschalK.WascherC.A.F. (2014). Waiting for better, not for more: corvids respond to quality in two delay maintenance tasks. — Anim. Behav. 90: 1-10.

HolekampK.E.SakaiS.T.LundriganB.L. (2007). Social intelligence in the spotted hyena (Crocuta crocuta). — Phil. Trans. Roy. Soc. Lond. B 362: 523-538.

HumphreyN.K. (1976). The social function of intellect. — In: Growing points in ethology ( BatesonP.P.G.HindeR.A. eds). Cambridge University PressCambridge p.  303-317.

IzawaE.I.WatanabeS. (2008). Formation of linear dominance relationship in captive jungle crows (Corvus macrorhynchos): implications for individual recognition. — Behav. Proc. 78: 44-52.

JollyA. (1966). Lemur social behavior and primate intelligence. — Science 153: 501-506.

KamilA.C. (2004). Sociality and the evolution of intelligence. — Trends Cogn. Sci. 8: 195-197.

KanaiR.BahramiB.RoylanceR.ReesG. (2012). Online social network size is reflected in human brain structure. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 1327-1334.

KavaleK.A.FornessS.R. (1996). Social skill deficits and learning disabilities: a meta-analyis. — J. Learn. Disabil. 29: 226-237.

KondoN.IzawaE.-I.WatanabeS. (2012). Crows cross-modally recognize group members but not non-group members. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 1937-1942.

KrauseJ.RuxtonG.D. (2001). Living in groups. — Oxford University PressOxford.

LorettoM.FraserO.N.BugnyarT. (2012). Ontogeny of social relations and coalition formation in common ravens (Corvus corax). — Int. J. Comp. Psychol. 25: 180-194.

MashburnA.J.PiantaR.C.HamreB.K.DownerJ.T.BarbarinO.A.BryantD.BurchinalM.EarlyD.M.HowesC. (2008). Measures of classroom quality in prekindergarten and children’s development of academic, language and social skills. — Child Dev. 79: 732-749.

McgonigleB.ChalmersM. (1992). Monkeys are rational!Q. J. Exp. Psychol. B 45: 189-228.

OstojićL.LeggE.W.ShawR.C.ChekeL.G.MendlM.NicolaS.ClaytonN.S. (2014). Can male Eurasian jays disengage from their own current desire to feed the female what she wants?Biol. Lett. 10: 20140042.

OstojićL.ShawR.C.ChekeL.G.ClaytonN.S. (2013). Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. — Proc. Natl. Acad. Sci. USA 110: 4123-4128.

Paz-y-MinoG.BondA.B.KamilA.C.BaldaR.P. (2004). Pinyon jays use transitive inference to predict social dominance. — Nature 430: 778-781.

ProopsL.McCombK.RebyD. (2009). Cross-modal individual recognition in domestic horses (Equus caballus). — Proc. Natl. Acad. Sci. USA 106: 947-951.

ReaderS.M.LalandK.N. (2002). Social intelligence, innovation, and enhanced brain size in primates. — Proc. Natl. Acad. Sci. USA 99: 4436-4441.

SeedA.M.ClaytonN.S.EmeryN.J. (2007). Postconflict third-party affiliation in rooks, Corvus frugilegus. — Curr. Biol. 17: 152-158.

SheehanM.J.TibbettsE.A. (2011). Specialized face learning is associated with individual recognition in paper wasps. — Science 334: 1272-1275.

SilkJ. (1999). Male bonnet macaques use information about third-party rank relationships to recruit allies. — Anim. Behav. 58: 45-51.

SkaugH.FournierD.NielsenA.MagnussonA.BolkerB. (2013). glmmADMB: generalized linear mixed models using AD Model Builder R package version 0.6.5. — The R Project for Statistical Computing Vienna.

SliwaJ.DuhamelJ.-R.PascalisO.WirthS. (2011). Spontaneous voice-face identity matching by rhesus monkeys for familiar conspecifics and humans. — Proc. Natl. Acad. Sci. USA 108: 1735-1740.

StöweM.BugnyarT.LorettoM.C.SchloeglC.RangeF.KotrschalK. (2006). Novel object exploration in ravens (Corvus corax): effects of social relationships. — Behav. Proc. 73: 68-75.

TaborskyB.OliveiraR.F. (2012). Social competence: an evolutionary approach. — Trends Ecol. Evol. 27: 679-688.

TempletonJ.J.KamilA.C.BaldaR.P. (1999). Sociality and social learning in two species of corvids: the pinyon jay (Gymnorhinus cyanocephalus) and the Clark’s nutcracker (Nucifraga columbiana). — J. Comp. Psychol. 113: 450-455.

ThorntonA.IsdenJ.MaddenJ.R. (2014). Toward wild psychometrics: linking individual cognitive differences to fitness. — Behav. press DOI:10.1093/beheco/aru095.

WascherC.A.F.BugnyarT. (2013). Behavioral responses to inequity in reward distribution and working effort in crows and ravens. — PloS One 8: e56885.

WascherC.A.F.FraserO.N.KotrschalK. (2010). Heart rate during conflicts predicts post-conflict stress-related behavior in greylag geese. — PloS One 5: e15751.

WascherC.A.F.DufourV.BugnyarT. (2012a). Carrion crows cannot overcome impulsive choice in a quantitative exchange task. — Front. Comp. Psychol. 3: 1-6.

WascherC.A.F.SziplG.BoeckleM.WilkinsonA. (2012b). You sound familiar: carrion crows can differentiate between the calls of known and unknown heterospecifics. — Anim. Cogn. 15: 1015-1019.

WeißB.M.KehmeierS.SchloeglC. (2010). Transitive inference in free-living greylag geese, Anser anser. — Anim. Behav. 79: 1277-1283.

WhitenA. (2000). Primate culture and social learning. — Cogn. Sci. 24: 477-508.

WilkinsonA.KuenstnerK.MuellerJ.HuberL. (2010). Social learning in a non-social reptile (Geochelone carbonaria). — Biol. Lett. 6: 614-616.

YiR.JohnsonM.W.BickelW.K. (2005). Relationship between cooperation in an iterated prisoner’s dilemma game and the discounting of hypothetical outcomes. — Learn. Behav. 33: 324-336.


  • View in gallery

    Mean frequency of approaches received by the focal individual ± SE per observation. The x-axis displays the number of trials in which the focal individual chose the larger quantity over the smaller one in the quantitative choice experiment. Each point illustrates one focal individual. The mean frequency of approaches received is displayed on the y-axis.

  • View in gallery

    Mean frequency of affiliative interactions initiated by the focal individual ± SE in relation to the behavioural response to inequity in reward distribution. The x-axis displays the change in exchange performance in the equity compared to the inequity condition. A negative value means individuals are exchanging more in the equity compared to the inequity condition.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 5
Full Text Views 8 8 5
PDF Downloads 2 2 1
EPUB Downloads 0 0 0