Risk in a changing world: environmental cues drive anti-predator behaviour in lake sturgeon (Acipenser fulvescens) in the absence of predators

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Rapidly changing climates and habitats represent challenges faced by the majority of animal species on our planet, and are leading to rapid declines in global biodiversity. However, the degree to which behaviour is influenced by changing environmental cues is not well understood. Specifically, environmental cues that have been correlated with predator abundance or performance over evolutionary history may have significant effects on prey behaviour. In the present study, we investigated the role of water clarity on foraging activity in lake sturgeon (Acipenser fulvescens) in the absence of predators. Foraging activity was significantly higher during the night than the day and was higher in turbid environments versus clear environments, indicating that decreased turbidity alone, may in part drive anti-predator behaviour and constrain foraging activity. Future work exploring the interconnectedness of environmental cues and behavioural changes will help us better understand the many ways rapidly changing environments can influence behavioural ecological processes.

Sections

References

AbrahamsM.KattenfeldM. (1997). The role of turbidity as a constraint on predator–prey interactions in aquatic environments. — Behav. Ecol. Sociobiol. 40: 169-174.

BillardR.LecointreG. (2001). Biology and conservation of sturgeon and paddlefish. — Rev. Fish. Biol. Fisher. 10: 355-392.

BoglioneC.BronziP.CataldiE.SerraS.GagliardiF.CataudellaS. (1997). Aspects of early development in the Adriatic sturgeon Acipenser naccarii. — J. Appl. Ichthyol. 15: 207-2013.

BonnerT.H.WildeG.R. (2002). Effects of turbidity on prey consumption by prairie stream fishes. — Trans. Am. Fish. Soc. 131: 1203-1208.

BouskilaA.BlumsteinD.T. (1992). Rules of thumb in predation hazard assessment: predictions from a dynamic model. — Am. Nat. 139: 161-176.

BrodieE.D.IIIBrodieE.D.Jr. (1999). Predator–prey arms races. — BioScience 49: 557-568.

BurnhamK.P.AndersonD.R. (2002). Model selection and multimodal inference, 2nd edn.Springer, New York, NY.

CaroT.ShermanP.W. (2011). Endangered species and a threatened discipline: behavioural ecology. — Trends Ecol. Evol. 26: 111-118.

CarrollS.P.WattersJ.V. (2008). Managing phenotypic variability with genetic and environmental heterogeneity: adaptation as a first principle of conservation practice. — In: Conservation biology: evolution in action ( CarrollS.P.FoxC.W., eds). Oxford University Press, New York, NY, p.  181-198.

ChiuS.AbrahamsM.V. (2010). Effects of turbidity and risk of predation on habitat selection decisions by fathead minnow (Pimephales promelas). — Environ. Biol. Fish. 87: 309-316.

ChiversD.P.Al-BatatiF.BrownG.E.FerrariM.C.O. (2013). The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems. — Ecol. Evol. 3: 268-277.

DawkinsR.KrebsJ.R. (1979). Arms races between and within species. — Proc. Roy. Soc. Lond. B: Biol. Sci. 205: 489-511.

De RobertisA.RyerC.H.VelozaA.BrodeurR.D. (2003). Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. — Can. J. Fish. Aquat. Sci. 60: 1517-1526.

DeWittT.J.SihA.HuckoJ.A. (1999). Trait compensation and cospecialization in a freshwater snail: size, shape and anti-predator behaviour. — Anim. Behav. 58: 397-407.

DewsonZ.S.JamesA.B.W.DeathR.G. (2007). A review of the consequences of decreased flow for instream habitat and macroinvertebrates. — J. N. Am. Benthol. Soc. 26: 401-415.

FerrariM.C.O.LysakK.R.ChiversD.P. (2010). Turbidity as an ecological constraint on learned predator recognition and generalization in prey fish. — Anim. Behav. 79: 515-519.

FerrariM.C.O.RanåkerL.WeinersmithK.L.YoungM.J.SihA.ConradJ.L. (2014). Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. — Environ. Biol. Fish. 97: 79-90.

GadomskiD.M.ParsleyM.J. (2005). Effects of turbidity, light level, and cover on predation of white sturgeon larvae by prickly sculpins. — Trans. Am. Fish. Soc. 134: 369-374.

GhalamborC.K.AngeloniL.M.CarrollS.P. (2010). Behavior as phenotypic plasticity. — In: Evolutionary behavioural ecology ( FoxC.WestneatD., eds). Oxford University Press, New York, NY, p.  90-107.

HelfmanG.S. (1993). Fish behaviour by day, night, and twilight. — In: Behaviour of teleost fishes, 2nd edn. ( PitcherT.J., ed.). Springer, London, p.  479-512.

HendryA.P.FarrugiaT.J.KinnisonM.T. (2008). Human influences on rates of phenotypic change in wild populations. — Mol. Ecol. 17: 20-29.

HendryA.P.KinnisonM.T.HeinoM.DayT.SmithT.B.FittG.BergstromC.T.OakeshottJ.JørgensenP.S.ZaluckiM.P.GilchristG.SouthertonS.SihA.StraussS.DenisonR.F.CarrollS.P. (2011). Evolutionary principles and their practical application. — Evol. Appl. 4: 159-183.

HueyR.B.HertzP.E.SinervoB. (2003). Behavioral drive versus behavioural inertia in evolution: a null model approach. — Am. Nat. 161: 357-366.

JohnsonB.L.RichardsonW.B.NaimoT.J. (1995). Past, present, and future concepts in large river ecology. — BioScience 45: 134-141.

KriegerJ.FuerstP.A. (2002). Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. — Mol. Biol. Evol. 19: 891-897.

KundzewiczZ.W.MataL.J.ArnellN.W.DöllP.JimenezB.MillerK.OkiT.ŞenZ.ShiklomanovI. (2008). The implications of projected climate change for freshwater resources and their management. — Hydrol. Sci. J. 53: 3-10.

LehtiniemiM.Engtröm-ÖstJ.ViitasaloM. (2005). Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius. — Environ. Biol. Fish. 73: 1-8.

Liljendahl-NurminenA.HorppilaJ.UusitaloL.NiemistöJ. (2008). Spatial variability in the abundance of pelagic invertebrate predators in relation to depth and turbidity. — Aquat. Ecol. 42: 25-33.

LimaS.L. (1998). Nonlethal effects in the ecology of predator–prey interactions. — BioScience 48: 25-34.

LimaS.L.BednekoffP.A. (1999). Temporal variation in danger drives anti-predator behavior: the predation risk allocation hypothesis. — Am. Nat. 153: 649-659.

LoewE.SillmanA.J. (1993). Age-related changes in the visual pigments of the white sturgeon (Acipenser transmontanus). — Can. J. Zool. 71: 1552-1557.

MoranN.A. (1992). The evolutionary maintenance of alternative phenotypes. — Am. Nat. 139: 971-989.

OrrJ.C.FabryV.J.AumontO.BoppL.DoneyS.C.FeelyR.A.GnanadesikanA.GruberN.IshidaA.JoosF.KeyR.M.LindsayK.Maier-ReimerE.MatearR.MonfrayP.MouchetA.NajjarR.G.PlattnerG.-K.RodgersK.B.SabineC.L.SarmientoJ.L.SchlitzerR.SlaterR.D.TotterdellI.J.WeirigM.-F.YamanakaY.YoolA. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. — Nature 437: 681-686.

PeakeS. (1999). Substrate preferences of juvenile hatchery-reared lake sturgeon, Acipenser fulvescens. — Environ. Biol. Fish. 56: 367-374.

PetersonD.L.VecseiP.JenningsC.A. (2007). Ecology and biology of the lake sturgeon: a synthesis of current knowledge of a threatened North American Acipenseridae. — Rev. Fish Biol. Fisher. 17: 59-76.

RichmondA.M.KynardB. (1995). Ontogenetic behavior of Shortnose Sturgeon Acipenser brevirostrum. — Copeia: 172-182.

RodríguezA.GisbertE. (2002). Eye development and the role of vision during Siberian sturgeon early ontogeny. — J. Appl. Ichthyol. 18: 280-285.

RoweD.K.DeanT.L. (1998). Effects of turbidity on the feeding ability of the juvenile migrant stage of six New Zealand freshwater fish species. — New Zeal. J. Mar. Fresh. 32: 21-29.

SchindlerD.W. (1988). Effects of acid rain on freshwater ecosystems. — Science 239: 149-157.

ShoupD.E.WahlD.H. (2009). The effects of turbidity on prey selection by piscivorous largemouth bass. — Trans. Am. Fish. Soc. 138: 1018-1027.

SihA. (1987). Predators and prey lifestyles: an evolutionary overview. — In: Predation: direct and indirect impacts on aquatic communities ( KerfootW.C.SihA., eds). New England University Press, Hanover, NH, p.  203-224.

SkubinnaJ.P.CoonT.G.BattersonT.R. (1995). Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw Bay, Lake Huron. — J. Great Lakes Res. 21: 476-488.

StankowichT.BlumsteinD.T. (2005). Fear in animals: a meta-analysis and review of risk assessment. — Proc. Roy. Soc. Lond. B: Biol. Sci. 272: 2627-2634.

SvendsenJ.C.GenzJ.AndersonG.W.StolJ.A.WatkinsonD.A.EndersE.C. (2014). Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in Lake Sturgeon Acipenser fulvescens. — PLoS ONE 9: e94693.

SymondsM.R.E.MoussalliA. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. — Behav. Ecol. Sociobiol. 65: 13-21.

Van de MeutterF.De MeesterL.StoksR. (2005). Water turbidity affects predator–prey interactions in a fish-damselfly system. — Oecologia 144: 327-336.

ViaS.LandeR. (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. — Evolution 39: 505-522.

West-EberhardM.J. (1989). Phenotypic plasticity and the origins of diversity. — Annu. Rev. Ecol. Syst. 20: 249-278.

WinderM.SchindlerD.E. (2004). Climate change uncouples trophic interactions in an aquatic ecosystem. — Ecology 85: 2100-2106.

WishingradV.ChiversD.P.FerrariM.C.O. (2014a). Relative cost/benefit trade-off between cover-seeking and escape behaviour in an ancestral fish: the importance of structural habitat heterogeneity. — Ethology 120: 973-981.

WishingradV.SloychukJ.R.FerrariM.C.O.ChiversD.P. (2014b). Alarm cues in Lake Sturgeon Acipenser fulvescens Rafinesque, 1817: potential implications for life-skills training. — J. Appl. Ichthyol., DOI:10.1111/jai.12580.

WishingradV.FerrariM.C.O.ChiversD.P. (2014c). Behavioural and morphological defenses in a fish with a complex anti-predator phenotype. — Anim. Behav. 95: 137-143.

ZhangX.SongJ.FanC.GuoH.WangX.BleckmannH. (2012). Use of electrosense in the feeding behavior of sturgeons. — Integr. Zool. 7: 74-82.

Figures

  • Overhead view of mesocosms used to simulate river microhabitats during experiments, showing the size and position of the grid used to score activity levels (quantified based on number of grid lines crossed).

    View in gallery
  • Mean (±SE) foraging activity for each hour in either clear N=38 (white points); or turbid N=40 (grey points) environments. Polynomial models are fit to either clear- (black line) or turbid-water (grey line) mean activity values (see text for details).

    View in gallery
  • Mean (±SE) foraging activity during the day (unshaded region) and during the night (shaded region) in clear environments (white bars) or turbid environments (grey bars). Clear-water/day activity N=38; turbid-water/day activity N=40; clear-water/night activity N=38; turbid-water/night activity N=40.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 8
Full Text Views 2 2 2
PDF Downloads 0 0 0
EPUB Downloads 0 0 0