Behavioural responses of ungulates to indirect cues of an ambush predator

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Ambush predators provide more persistent cues of predation risk compared to coursing predators and are predicted to exert stronger effects on behaviour of their prey. We studied anti-predator responses of ungulates by means of camera traps to an olfactory cue (fresh scat) of an ambush predator, the Eurasian lynx (Lynx lynx). Roe deer (Capreolus capreolus) and red deer (Cervus elaphus) both important prey species for lynx were not more vigilant when exposed to lynx scent, but reduced their visitation duration. Our results contrast with previously reported responses of red deer to scent from a coursing predator, the wolf (Canis lupus), where only vigilance and foraging behaviour but not visitation duration changed in response to wolf scat. This indicates that ungulates are able to recognize the risk of predation from predators with differing hunting modes based on olfactory cues and adjust their anti-predatory behaviour.

Behavioural responses of ungulates to indirect cues of an ambush predator

in Behaviour

Sections

References

  • AbramsP.A. (1984). Foraging time optimization and interactions in food webs. — Am. Nat. 124: 80-96.

  • AtwoodT.C.GeseE.M.KunkelK.E. (2009). Spatial partitioning of predation risk in a multiple predator–multiple prey system. — J. Wildl. Manage. 73: 876-884.

  • BarnierF.ValeixM.DuncanP.Chamaillé-JammesS.BarreP.LoveridgeA.J.MacdonaldD.W.FritzH. (2014). Diet quality in a wild grazer declines under the threat of an ambush predator. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20140446.

  • BernadzkiE.BolibokL.BrzezieckiB.ZajączkowskiJ.ŻyburaH. (1998). Compositional dynamics of natural forests in the Białowieża National Park, northeastern Poland. — J. Veg. Sci. 9: 229-238.

  • Chamaillé-JammesS.MalcuitH.Le SaoutS.MartinJ.-L. (2014). Innate threat-sensitive foraging: black-tailed deer remain more fearful of wolf than of the less dangerous black bear even after 100 years of wolf absence. — Oecologia 174: 1151-1158.

  • ChildressM.J.LungM.A. (2003). Predation risk, gender and the group size effect, does elk vigilance depend upon the behaviour of conspecifics?Anim. Behav. 66: 389-398.

  • CreelS.ChristiansonD. (2008). Relationships between direct predation and risk effects. — Trends Ecol. Evol. 23: 194-201.

  • CreelS.WinnieJ.A.Jr. (2005). Responses of elk herd size to fine-scale spatial and temporal variation in the risk of predation by wolves. — Anim. Behav. 69: 1181-1189.

  • CreelS.WinnieJ.A.Jr.MaxwellB.HamlinK.CreelM. (2005). Elk alter habitat selection as an antipredator response to wolves. — Ecology 86: 3387-3397.

  • CreelS.ChristiansonD.LileyS.WinnieJ.A. (2007). Predation risk affects reproductive physiology and demography of elk. — Science 315: 960.

  • ElgarM.A. (1989). Predator vigilance and group size in mammals and birds, a critical review of the empirical evidence. — Biol. Rev. Camb. Philos. Soc. 64: 13-33.

  • FalińskiJ.B. (1986). Vegetation dynamics in temperate lowland primeval forests ecological studies in Białowieża forest. — Dr. W. JunkDordrecht.

  • FerreroD.M.LemonJ.K.FlueggeD.PashkovskiS.L.KorzanW.J.DattaS.R.SpehrM.FendtM.LiberlesS.D. (2011). Detection and avoidance of a carnivore odor by prey. — Proc. Natl. Acad. Sci. USA 108: 11235-11240.

  • FortinD.BeyerH.L.BoyceM.S.SmithD.W.DuchesneT.MaoJ.S. (2005). Wolves influence elk movements, behavior shapes a trophic cascade in Yellowstone National Park. — Ecology 86: 1320-1330.

  • FrairJ.L.MerillE.H.VisscherD.R.FortinD.BeyerH.L.MoralesJ.M. (2005). Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. — Landsc. Ecol. 20: 273-287.

  • HalofskyJ.RippleW. (2008). Linkages between wolf presence and aspen recruitment in the Gallatin elk winter range of southwestern Montana, USA. — Forestry 81: 195-207.

  • HochmanV.KotlerB.P. (2007). Patch use, apprehension, and vigilance behavior of Nubian Ibex under perceived risk of predation. — Behav. Ecol. 18: 368-374.

  • HolmesB.R.LaundréJ.W. (2006). Use of open, edge and forest areas by pumas Puma concolor in winter, are pumas foraging optimally?Wildl. Biol. 12: 201-209.

  • HunterL.T.B.SkinnerJ.D. (1998). Vigilance behavior in African ungulates, the role of predation pressure. — Behaviour 135: 195-211.

  • JędrzejewskaB.JędrzejewskiW. (1998). Predation in vertebrate communities the Białowieża Primeval Forest as a case study. — SpringerBerlin.

  • JędrzejewskaB.OkarmaH.JędrzejewskiW.MilkowskiL. (1994). Effects of exploitation and protection on forest structure, ungulate density and wolf predation in Białowieża Primeval Forest, Poland. — J. Appl. Ecol. 31: 664-676.

  • JędrzejewskiW.SchmidtK.OkarmaH.KowalczykR. (2002a). Movement pattern and home range use by the Eurasian lynx in Białowieża Primeval Forest (Poland). — Ann. Zool. Fenn. 39: 29-41.

  • JedrzejewskiW.SchmidtK.TheuerkaufJ.JedrzejewskaB.OkarmaH. (2001). Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza Primeval Forest in Poland. — Can. J. Zool. 79: 1993-2004.

  • JędrzejewskiW.SchmidtK.TheuerkaufJ.JędrzejewskaB.SelvaN.ZubK.SzymuraL. (2002b). Kill rates and predation by wolves on ungulate populations in Białowieża Primeval Forest (Poland). — Ecology 83: 1341-1356.

  • KauffmanM.J.VarleyN.SmithD.W.StahlerD.R.MacNultyD.R.BoyceM.S. (2007). Landscape heterogeneity shapes predation in a newly restored predator–prey system. — Ecol. Lett. 10: 690-700.

  • KuijperD.P.J.CromsigtJ.P.M.G.ChurskiM.AdamB.JędrzejewskaB.JędrzejewskiW. (2009). Do ungulates preferentially feed in forest gaps in European temperate forests?Forest Ecol. Manage. 258: 1528-1535.

  • KuijperD.P.J.VerwijmerenM.ChurskiM.ZbyrytA.SchmidtK.JędrzejewskaB.SmitC. (2014). What cues do ungulates use to assess predation risk in dense temperate forests?PLoS ONE 9: e84607.

  • LaundréJ.W.HernándezL.AltendorfK.B. (2001). Wolves, elk, and bison, reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. — Can. J. Zool. 79: 1401-1409.

  • LaundréJ.W.HernándezL.RippleW.J. (2010). The landscape of fear, ecological implications of being afraid. — Open Ecol. J. 3: 1-7.

  • LileyS.CreelS. (2008). What best explains vigilance in elk: characteristics of prey, predators, or the environment?Behav. Ecol. 19: 245-254.

  • LimaS.L.DillL.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640.

  • LingleS.PellisS.M. (2002). Fight or flight? Antipredator behavior and the escalation of coyote encounters with deer. — Oecologia 131: 154-164.

  • MacNultyD.R.MechL.D.SmithD.W. (2007). A proposed ethogram of large-carnivore predatory behaviour, exemplified by the wolf. — J. Mammal. 88: 595-605.

  • MaoJ.S.BoyceM.S.SmithD.W.SingerF.J.ValesD.J.VoreJ.M.MerrillE.H. (2005). Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. — J. Wildl. Manage. 69: 1691-1707.

  • MillerJ.R.B.AmentJ.M.SchmitzO.J. (2014). Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. — J. Anim. Ecol. 83: 214-222.

  • OkarmaH.JędrzejewskiW.SchmidtK.KowalczykR.JędrzejewskaB. (1997). Predation of Eurasian lynx on roe deer and red deer in Białowieża Primeval Forest, Poland. — Acta Theriol. 42: 203-224.

  • OkarmaH.JędrzejewskiW.SchmidtK.ŚnieżkoS.BunevichA.N.JędrzejewskaB. (1998). Home ranges of wolves in Białowieża Primeval Forest, Poland, compared with other Eurasian populations. — J. Mammal. 79: 842-852.

  • PreisserE.L.BolnickD.I.BlumsteinD.T. (2005). Scared to death? The effects of intimidation and consumption in predator prey interactions. — Ecology 86: 501-509.

  • PreisserE.L.OrrockJ.L.SchmitzO.J. (2007). Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. — Ecology 88: 2744-2751.

  • RobertsG. (1996). Why individual vigilance declines as group size increases. — Anim. Behav. 51: 1077-1086.

  • SandH.WikenrosC.WabakkenP.LibergO. (2006). Cross-continental differences in pattern of predation: will naive moose in Scandinavia ever learn?Proc. Roy. Soc. Lond. B: Biol. Sci. 273: 1421-1427.

  • ScheelD. (1993). Watching for lions in the grass, the usefulness of scanning and its effects during hunts. — Anim. Behav. 46: 695-704.

  • SchmidtK.JędrzejewkiW.OkarmaH. (1997). Spatial organization and social relations in the Eurasian lynx population in Białowieża Primeval Forest, Poland. — Acta Theriol. 42: 289-312.

  • SchmidtK.JędrzejewskiW.OkarmaH.KowalczykR. (2009). Spatial interactions between grey wolves and Eurasian lynx in Białowieża Primeval Forest, Poland. — Ecol. Res. 24: 207-214.

  • SchmitzO.J. (2005). Behavior of predators and prey and links with population-level processes. — In: Ecology of predator–prey interactions ( BarbosaP.CastellanosP. eds). Oxford University PressOxford p.  256-278.

  • SchmitzO.J. (2008). Effects of predator hunting mode on grassland ecosystem function. — Science 319: 952-954.

  • ShraderA.M.BrownJ.S.KerleyG.I.H.KotlerB.P. (2008). Do free-ranging domestic goats show ‘landscapes of fear’? Patch use in response to habitat features and predator cues. — J. Arid Environ. 72: 1811-1819.

  • StevensM. (2013). Sensory behavior ecology and evolution. — Oxford University PressOxford.

  • SwihartR.K.PignatelloJ.J.MattinaM.J.I. (1991). Aversive responses of white-tailed deer, Odocoileus virginianus, to predator urines. — J. Chem. Ecol. 17: 767-777.

  • ThakerM.VanakA.T.OwenC.R.OgdenM.B.NiemannS.M.SlotowR. (2011). Minimizing predation risk in a landscape of multiple predators, effects on the spatial distribution of African ungulates. — Ecology 92: 398-407.

  • ValeixM.LoveridgeA.J.Chamaillé-JammesS.DavidsonZ.MurindagomoF.FritzH.MacdonaldD.W. (2009). Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. — Ecology 90: 23-30.

  • van der MeerE.PaysO.FritzH. (2012). The effect of simulated African wild dog presence on anti-predator behaviour of kudu and impala. — Ethology 118: 1-10.

  • WikenrosC.SandH.WabakkenP.LibergO.PedersenH.C. (2009). Wolf predation on moose and roe deer, chase distances and outcome of encounters. — Acta Theriol. 54: 207-218.

  • WinnieJ.CreelS. (2007). Sex-specific behavioral responses of elk to spatial and temporal variation in the threat of wolf predation. — Anim. Behav. 73: 215-225.

Figures

  • View in gallery

    Visitation duration (mean ± SE) by (a) roe deer (N=78) at forest edges, (b) red deer (N=158) in forest gaps, (c) red deer (N=105) at forest edges and (d) wild boar (N=360) in forest gaps at lynx scat and control sites in the Białowieża Primeval Forest.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 422 422 56
Full Text Views 234 234 8
PDF Downloads 17 17 5
EPUB Downloads 1 1 0