Nonapeptide influences on social behaviour: effects of vasotocin and isotocin on shoaling and interaction in zebrafish

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Nonapeptides are important regulators of social behaviour across vertebrate taxa. While their role in simple grouping behaviour has been explored in estrildid finches, other taxa are understudied, prompting us to investigate nonapeptide influences on shoaling behaviour in zebrafish. Subjects received injections of isotocin, an isotocin antagonist, vasotocin, a vasotocin antagonist, or saline, followed by a test of grouping behaviour. Vasotocin decreased social interaction with the shoal. Unexpectedly, the vasotocin antagonist also reduced social interaction with the shoal, as well as general shoaling behaviour. Isotocin and its antagonist had minimal effects on grouping behaviours. These results suggest social interaction and shoaling are discrete aspects of sociality differentially influenced by vasotocin, although we cannot discount possible anxiogenic effects of vasotocin. Contrasting these results with studies in other systems demonstrates that each nonapeptide’s role in social behaviour varies across taxa, and cautions against a simplistic characterisation of nonapeptides as prosocial regulators of behaviour.

Nonapeptide influences on social behaviour: effects of vasotocin and isotocin on shoaling and interaction in zebrafish

in Behaviour

Sections

References

AlbersH.E.DeanA.KaromM.C.SmithD.HuhmanK.L. (2006). Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. — Brain Res. 1073-1074: 425-430.

BalmentR.J.LuW.WeybourneE.WarneJ.M. (2006). Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. — Gen. Comp. Endocrinol. 147: 9-16.

BarrazaJ.A.ZakP.J. (2013). Oxytocin instantiates empathy and produces prosocial behaviors. — In: Oxytocin vasopressin and related peptides in the regulation of behavior ( CholerisE.PfaffD.W.KavaliersM. eds). Cambridge University PressCambridge p.  331-342.

BassS.L.S.GerlaiR. (2008). Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. — Behav. Brain Res. 186: 107-117.

BeiderbeckD.I.NeumannI.D.VeenemaA.H. (2007). Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. — Eur. J. Neurosci. 26: 3597-3605.

Bester-MeredithJ.K.YoungL.J.MarlerC.A. (1999). Species differences in paternal behavior and aggression in Peromyscus and their associations with vasopressin immunoreactivity and receptors. — Horm. Behav. 36: 25-38.

BielskyI.F.HuS.B.SzegdaK.L.WestphalH.YoungL.J. (2004). Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. — Neuropsychopharmacology 29: 483-493.

BlessingJ.J.MarshallJ.C.BalcombeS.R. (2010). Humane killing of fishes for scientific research: a comparison of two methods. — J. Fish Biol. 76: 2571-2577.

BraidaD.DonzelliA.MartucciR.CapurroV.BusnelliM.ChiniB.SalaM. (2012). Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. — Psychopharmacology 220: 319-330.

BrownC.LalandK.N.KrauseJ. eds (2006). Fish cognition and behavior. — BlackwellOxford.

BuskeC.GerlaiR. (2011). Shoaling develops with age in zebrafish (Danio rerio). — Prog. Neuropsychopharmacol. Biol. Psychiatr. 35: 1409-1415.

CachatJ.M.CanavelloP.R.EleganteM.F.BartelsB.K.ElkhayatS.I.HartP.C.TienA.K.TienD.H.BeesonE.MohnotS.LaffoonA.L.StewartA.M.GaikwadS.WongK.HaymoreW.KalueffA.V. (2010). Modeling stress and anxiety in zebrafish. — In: Zebrafish models in neurobehavioral research ( KalueffA.V.CachatJ.M. eds). Humana PressTotowa, NJ p.  73-88.

CarneiroL.A.OliveiraR.F.CanárioA.V.M.GroberM.S. (2003). The effect of arginine vasotocin on courtship behaviour in a blenniid fish with alternative reproductive tactics. — Fish Physiol. Biochem. 28: 241-243.

ChanW.Y.WoN.C.ChengL.L.ManningM. (1996). Isosteric substitution of Asn5 in antagonists of oxytocin and vasopressin leads to highly selective and potent oxytocin and V1a receptor antagonists: new approaches for the design of potential tocolytics for preterm labor. — J. Pharmacol. Exp. Ther. 277: 999-1003.

CrawleyM.J. (2007). The R book. — WileyChichester.

DewanA.K.MaruskaK.P.TricasT.C. (2008). Arginine vasotocin neuronal phenotypes among congeneric territorial and shoaling reef butterflyfishes: species, sex and reproductive season comparisons. — J. Neuroendocrinol. 20: 1382-1394.

DewanA.K.RameyM.L.TricasT.C. (2011). Arginine vasotocin neuronal phenotypes, telencephalic fiber varicosities, and social behavior in butterflyfishes (Chaetodontidae): potential similarities to birds and mammals. — Horm. Behav. 59: 56-66.

EganR.J.BergnerC.L.HartP.C.CachatJ.M.CanavelloP.R.EleganteM.F.ElkhayatS.I.BartelsB.K.TienA.K.TienD.H.MohnotS.BeesonE.GlasgowE.AmriH.ZukowskaZ.KalueffA.V. (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. — Behav. Brain Res. 205: 38-44.

FilbyA.L.PaullG.C.HickmoreT.F.TylerC.R. (2010). Unravelling the neurophysiological basis of aggression in a fish model. — BMC Genomics 11: 498.

FrancisD.D.ChampagneF.C.MeaneyM.J. (2000). Variations in maternal behaviour are associated with differences in oxytocin receptor levels in the rat. — J. Neuroendocrinol. 12: 1145-1148.

GodwinJ.ThompsonR. (2012). Nonapeptides and social behavior in fishes. — Horm. Behav. 61: 230-238.

GoodsonJ.L. (2008). Nonapeptides and the evolutionary patterning of sociality. — Prog. Brain Res. 170: 3-15.

GoodsonJ.L.BassA.H. (2000). Forebrain peptides modulate sexually polymorphic vocal circuitry. — Nature 403: 769-772.

GoodsonJ.L.KingsburyM.A. (2011). Nonapeptides and the evolution of social group sizes in birds. — Front. Neuroanat. 5: 13.

GoodsonJ.L.WangY. (2006). Valence-sensitive neurons exhibit divergent functional profiles in gregarious and asocial species. — Proc. Natl. Acad. Sci. USA 103: 17013-17017.

GoodsonJ.L.SchrockS.E.KlattJ.D.KabelikD.KingsburyM.A. (2009). Mesotocin and nonapeptide receptors promote estrildid flocking behavior. — Science 325: 862-866.

GozdowskaM.ŚlebiodaM.KulczykowskaE. (2013). Neuropeptides isotocin and arginine vasotocin in urophysis of three fish species. — Fish Physiol. Biochem. 39: 863-869.

GreenwoodA.K.WarkA.R.FernaldR.D.HofmannH.A. (2008). Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 2393-2402.

HuffmanL.S.HinzF.I.WojcikS.Aubin-HorthN.HofmannH.A. (2014). Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. — Gen. Comp. Endocrinol.in press DOI:10.1016/j.ygcen.2014.03.004.

InselT.R.ShapiroL.E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. — Proc. Natl. Acad. Sci. USA 89: 5981-5985.

IwasakiK.TaguchiM.BonkowskyJ.L.KuwadaJ.Y. (2013). Expression of arginine vasotocin receptors in the developing zebrafish CNS. — Gene Expr. Patterns 13: 335-342.

KellyA.M.KingsburyM.A.HoffbuhrK.SchrockS.E.WaxmanB.KabelikD.ThompsonR.R.GoodsonJ.L. (2011). Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty. — Horm. Behav. 60: 12-21.

LarsonE.T.O’MalleyD.M.MelloniJ.R.H. (2006). Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. — Behav. Brain Res. 167: 94-102.

LemaS.C.NevittG.A. (2004). Exogenous vasotocin alters aggression during agonistic exchanges in male Amargosa River pupfish (Cyprinodon nevadensis amargosae). — Horm. Behav. 46: 628-637.

LevinE.D.BencanZ.CeruttiD.T. (2007). Anxiolytic effects of nicotine in zebrafish. — Physiol. Behav. 90: 54-58.

MaddenJ.R.Clutton-BrockT.H. (2011). Experimental peripheral administration of oxytocin elevates a suite of cooperative behaviours in a wild social mammal. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 1189-1194.

ManningM.MitevaK.PanchevaS.StoevS.WoN.C.ChanW.Y. (1995). Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with Atosiban. — Int. J. Pept. Protein Res. 46: 244-252.

ManningM.StoevS.ChiniB.DurrouxT.MouillacB.GuillonG. (2008). Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. — Prog. Brain Res. 170: 473-512.

Meyer-LindenbergA.DomesG.KirschP.HeinrichsM. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. — Nat. Rev. Neurosci. 12: 524-538.

MooreF.L.BoydS.K.KelleyD.B. (2005). Historical perspective: hormonal regulation of behaviors in amphibians. — Horm. Behav. 48: 373-383.

O’ConnellL.A.HofmannH.A. (2011). Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. — Front. Neuroendocrinol. 32: 320-335.

O’ConnellL.A.MatthewsB.J.HofmannH.A. (2012). Isotocin regulates paternal care in a monogamous cichlid fish. — Horm. Behav. 61: 725-733.

OldfieldR.G.HofmannH.A. (2011). Neuropeptide regulation of social behavior in a monogamous cichlid fish. — Physiol. Behav. 102: 296-303.

OlsonR.D.KastinA.J.Montalbano-SmithD.OlsonG.A.CoyD.H.MichellG.F. (1978). Neuropeptides and the blood-brain barrier in goldfish. — Pharmacol. Biochem. Behav. 9: 521-524.

PavlidisM.SundvikM.ChenY.C.PanulaP. (2011). Adaptive changes in zebrafish brain in dominant-subordinate behavioral context. — Behav. Brain Res. 225: 529-537.

PedersenC.A. (2013). Oxytocin regulation of maternal behavior: from rodents to humans. — In: Oxytocin vasopressin and related peptides in the regulation of behavior ( CholerisE.PfaffD.W.KavaliersM. eds). Cambridge University PressCambridge p.  148-182.

PitcherT.J. (1983). Heuristic definitions of fish shoaling behavior. — Anim. Behav. 31: 611-613.

ReddonA.R.O’ConnorC.M.Marsh-RolloS.E.BalshineS. (2012). Effects of isotocin on social responses in a cooperatively breeding fish. — Anim. Behav. 84: 753-760.

RingR.MalbergJ.PotestioL.PingJ.BoikessS.LuoB.SchechterL.RizzoS.RahmanZ.Rosenzweig-LipsonS. (2006). Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. — Psychopharmacology 185: 218-225.

SantangeloN.BassA.H. (2006). New insights into neuropeptide modulation of aggression: field studies of arginine vasotocin in a territorial tropical damselfish. — Proc. Roy. Soc. Lond. B: Biol. Sci. 273: 3085-3092.

SpeedieN.GerlaiR. (2008). Alarm substance induced behavioral responses in zebrafish (Danio rerio). — Behav. Brain Res. 188: 168-177.

SpenceR.GerlachG.LawrenceC.SmithC. (2008). The behaviour and ecology of the zebrafish, Danio rerio. — Biol. Rev. 83: 13-34.

ThompsonR.R.WaltonJ.C. (2004). Peptide effects on social behavior: effects of vasotocin and isotocin on social approach behavior in male goldfish (Carassius auratus). — Behav. Neurosci. 118: 620-626.

ThompsonR.R.WaltonJ.C.BhallaR.GeorgeK.C.BethE.H. (2008). A primitive social circuit: vasotocin-substance P interactions modulate social behavior through a peripheral feedback mechanism in goldfish. — Eur. J. Neurosci. 27: 2285-2293.

WaltonJ.C.WaxmanB.HoffbuhrK.KennedyM.BethE.ScangosJ.ThompsonR.R. (2010). Behavioral effects of hindbrain vasotocin in goldfish are seasonally variable but not sexually dimorphic. — Neuropharmacology 58: 126-134.

WilsonJ.M.BunteR.M.CartyA.J. (2009). Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). — J. Am. Ass. Lab. Anim. Sci. 48: 785-789.

WinslowJ.T.HastingsN.CarterC.S.HarbaughC.R.InselT.R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. — Nature 365: 545-548.

Figures

  • View in gallery

    Schematic overview of the experimental apparatus, plan view. Lines were drawn on the outside of a large aquarium (150 × 50 cm) marking a neutral zone (N) containing a pump (p), a shoaling zone (S) and a no-shoal zone (NS), the latter two dependant on the location of a stimulus shoal. The subject was released from a transparent cylinder (c) after acclimatisation and its behaviour was recorded for 10 min. A conspecific shoal was placed at random on one side of the tank behind a transparent solid partition (b) in a confined zone (f). Interaction was recorded when subjects were both in the shoaling zone (S) and swimming head first against the partition (b).

  • View in gallery

    Mean ± SE values for each treatment for (A) time spent in the shoaling zone, (B) time spent interacting with the shoal and (C) time spent interacting as a proportion of time spent shoaling for each treatment group. p0.05, ∗∗p0.01, ∗∗∗p0.001.

  • View in gallery

    Mean ± SE values for each treatment for (A) latency to enter the shoaling zone and (B) latency to interact at the partition with the stimulus shoal. §p0.1, p0.05, ∗∗p0.01.

  • View in gallery

    Mean ± SE number of switches made between the shoaling, neutral and no-shoal zones for each treatment. p0.05, ∗∗p0.01, NS: p0.1.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 81 81 29
Full Text Views 104 104 62
PDF Downloads 6 6 2
EPUB Downloads 0 0 0