Behavioural and genetic approaches to evaluate the effectiveness of deterrent marking by a parasitoid wasp

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Some parasitoids deposit chemical signals after oviposition as an indication that the host has already been parasitized. This marking can deter subsequent conspecifics or one’s self from laying eggs in previously exploited hosts, thus reducing the risk of superparasitism. We investigated the egg laying behaviour of the parasitoid wasp Hyposoter horticola. In a laboratory experiment, we tested whether oviposition, post-oviposition marking, or both together deter subsequent oviposition by conspecifics. We then tested the effectiveness of the deterring mark under natural conditions using maternity assignment based on 14 polymorphic DNA microsatellite markers. The behavioural experiment showed that patch marking deters conspecifics from probing the host eggs, and oviposition deters those that probe from laying eggs in previously parasitized host clusters. These results were confirmed by the maternity assignment showing that under natural conditions, host egg clusters are primarily parasitized by a single H. horticola female.

Behavioural and genetic approaches to evaluate the effectiveness of deterrent marking by a parasitoid wasp

in Behaviour

Sections

References

AgbokaK.SchulthessF.Chabi-OlayeA.LaboI.GounouS.SmithH. (2002). Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). — J. Insect Behav. 15: 1-12.

BernsteinC.DriessenG. (1996). Patch-marking and optimal search patterns in the parasitoid Venturia canescens. — J. Anim. Ecol. 65: 211-219.

BrodeurJ.BoivinG. (2004). Functional ecology of immature parasitoids. — Annu. Rev. Entomol. 49: 27-49.

ChowA.MackauerM. (1999). Marking the package or its contents: host discrimination and acceptance in the ectoparasitoid Dendrocerus carpenteri (Hymenoptera: Megaspilidae). — Can. Entomol. 131: 495-505.

CouchouxC.SeppäP.van NouhuysS. (2015). Microsatellites for the parasitoid wasp Hyposoter horticola. — Conserv. Gen. Res. DOI:10.1007/s12686-015-0437-3.

CouchouxC.van NouhuysS. (2014). Effects of intraspecific competition and host-parasitoid developmental timing on foraging behaviour of a parasitoid wasp. — J. Insect Behav. 273: 283-301.

CroninJ.T.StrongD.R. (1993). Superparasitism and mutual interference in the fairyfly parasitoid Anagrus delicatus. — Ecol. Entomol. 18: 293-302.

d’EttorreP. (2008). Sociobiology of communication: an interdisciplinary perspective. — Oxford University PressNew York, NY.

FieldS.A.KellerM.A. (1999). Short-term host discrimination in the parasitoid wasp Trissolcus basalis Wollaston (Hymenoptera: Scelionidae). — Austr. J. Zool. 47: 19-28.

FisherR.C. (1961). A study in insect multiparasitism. 2. Mechanism and control of competition for possession of host. — J. Exp. Biol. 38: 605-629.

GauthierN.MongeJ.P. (1999). Could the egg itself be the source of the oviposition deterrent marker in the ectoparasitoid Dinarmus basalis?J. Insect Physiol. 45: 393-400.

GodfrayH.C.J. (1994). Parasitoids: behavioural and evolutionary ecology. — Princeton University PressPrinceton, NJ.

GrillenbergerB.K.KoevoetsT.Burton-ChellewM.N.SykesE.M.ShukerD.M.van de ZandeL.BijlsmaR.GadauJ.BeukeboomL.W. (2008). Genetic structure of natural Nasonia vitripennis populations: validating assumptions of sex-ratio theory. — Mol. Ecol. 17: 2854-2864.

GrossM.R. (1996). Alternative reproductive strategies and tactics: diversity within sexes. — Trends Ecol. Evol. 11: 92-98.

HanskiI.A. (2011). Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. — Proc. Natl. Acad. Sci. USA 108: 14397-14404.

HarveyJ.A.StrandM.R. (2002). The developmental strategies of endoparasitoid wasps vary with host feeding ecology. — Ecology 83: 2439-2451.

HoffmeisterT.S.RoitbergB.D. (1997). To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. — Evol. Ecol. 11: 145-168.

KankareM.JensenM.K.KesterK.M.SaccheriI.J. (2004). Characterization of microsatellite loci in two primary parasitoids of the butterfly Melitaea cinxia, Cotesia melitaearum and Hyposoter horticola (Hymenoptera). — Mol. Ecol. Notes 4: 231-233.

KuussaariM.van NouhuysS.HellmannJ.SingerM.C. (2004). Larval biology of checkerspot butterflies. — In: On the wings of checkerspots: a model system for population biology ( EhrlichP.R.HanskiI. eds). Oxford University PressOxford p.  138-160.

LepaisO.DarvillB.O’ConnorS.OsborneJ.L.SandersonR.A.CussansJ.GoffeL.GoulsonD. (2010). Estimation of bumblebee queen dispersal distances using sibship reconstruction method. — Mol. Ecol. 19: 819-831.

LiuS.ZhaoB.BonjourE. (2012). Host marking and host discrimination in phytophagous insects. — In: Recent advances in entomological research ( LiuT.KangL. eds). SpringerDordrecht p.  73-85.

MackauerM. (1990). Host discrimination and larval competition in solitary endoparasitoids. — In: Critical issues in biological control ( MackauerM.EhlerL.E.RolandsJ. eds). InterceptAndover p.  41-62.

McKayT.BroceA.B. (2004). Discrimination of self-parasitized hosts by the pupal parasitoid Muscidifurax zaraptor (Hymenoptera: Pteromalidae). — Ann. Entomol. Soc. Am. 97: 592-599.

MontovanK.CouchouxC.JonesL.E.ReeveH.K.van NouhuysS. (2015). The puzzle of sub-maximal resource use by a parasitoid wasp. — Am. Nat. 185: 538-550.

MougeotF.RedpathS.M.LeckieF.HudsonP.J. (2003). The effect of aggressiveness on the population dynamics of a territorial bird. — Nature 421: 737-739.

NufioC.R.PapajD.R. (2001). Host marking behavior in phytophagous insects and parasitoids. — Entomol. Exp. Appl. 99: 273-293.

OutremanY.Le RalecA.PlantegenestM.ChaubetB.PierreJ.S. (2001). Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. — J. Insect Physiol. 47: 339-348.

ProkopyR.J. (1981). Epideictic pheromones that influence spacing patterns of phytophagous insects. — In: Semiochemicals: their role in pest control ( NordlundR.L.J.LewisW.J. eds). WileyNew York, NY p.  181-213.

R Core Team (2012). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna.

RoitbergB.D.ProkopyR.J. (1987). Insects that mark host plants. — Bioscience 37: 400-406.

SaastamoinenM. (2007). Life-history, genotypic, and environmental correlates of clutch size in the Glanville fritillary butterfly. — Ecol. Entomol. 32: 235-242.

SeppäP.QuellerD.C.StrassmannJ.E. (2012). Why wasp foundresses change nests: relatedness, dominance, and nest quality. — PLoS ONE 7: 9.

ShawM.R.StefanescuC.van NouhuysS. (2009). Parasitoids of European butterflies. — In: Ecology of butterflies in Europe ( SetteleJ.ShreeveT.G.KonvickaM.Van DyckH. eds). Cambridge University PressCambridge p.  130-156.

StelinskiL.L.OakleafR.Rodriguez-SaonaC. (2007). Oviposition-deterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. — Behaviour 144: 429-445.

TaborskyM. (1998). Sperm competition in fish: ‘bourgeois’ males and parasitic spawning. — Trends Ecol. Evol. 13: 222-227.

van AlphenJ.J.M.VisserM.E. (1990). Superparasitism as an adaptive strategy for insect parasitoids. — Annu. Rev. Entomol. 35: 59-79.

van BaarenJ.NenonJ.P.BoivinG. (1995). Comparison of oviposition behavior of a solitary and a gregarious parasitoid (Hymenoptera, Mymaridae). — J. Insect Behav. 85: 671-686.

van LenterenJ.C. (1981). Host discrimination by parasitoids. — In: Semiochemicals: their role in pest control ( NordlundR.L.J.LewisW.J. eds). WileyNew York, NY p.  153-173.

van NouhuysS.EhrnstenJ. (2004). Wasp behavior leads to uniform parasitism of a host available only a few hours per year. — Behav. Ecol. 15: 661-665.

van NouhuysS.HanskiI. (2002). Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. — In: Multitrophic level interactions ( TscharntkeT.HawkinsB.A. eds). Cambridge University PressCambridge p.  124-147.

van NouhuysS.KaartinenR. (2008). A parasitoid wasp uses landmarks while monitoring potential resources. — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 377-385.

van NouhuysS.PunjuE. (2010). Coexistence of competing parasitoids: which is the fugitive and where does it hide?Oikos 119: 61-70.

van NouhuysS.SingerM.C.NieminenM. (2003). Spatial and temporal patterns of caterpillar performance and the suitability of two host plant species. — Ecol. Entomol. 28: 193-202.

VenablesW.N.RipleyB.D. (2002). Modern applied statistics with S. — SpringerNew York, NY.

WangJ.L. (2004). Sibship reconstruction from genetic data with typing errors. — Genetics 166: 1963-1979.

Figures

  • View in gallery

    Female Hyposoter horticola parasitizing a Melitaea cinxia egg cluster. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Proportion of visits in which the wasps probed the eggs (a) and duration of the probing (b) for control (UP + UM), parasitized + marked (P + M), parasitized (P + UM), and marked (UP + M) host egg clusters. Different letters indicate a significant difference (p<0.001). ∗∗∗ Significant difference (p<0.001); NS, no significant difference.

  • View in gallery

    Proportion of visits in which the wasps marked the eggs for control (UP + UM), parasitized + marked (P + M), parasitized (P + UM), and marked (UP + M) host egg clusters (a) and duration of the marking for control (UP + UM) and parasitized (P + UM) host egg clusters (b). Different letters indicate a significant difference (p<0.05). ∗∗∗ Significant difference (p<0.001).

  • View in gallery

    (a) Number of host clusters parasitized by one to eight different H. horticola females and (b) number of caterpillars in the host cluster as a function of the number of females that parasitized the host cluster, in ten host clusters naturally parasitized in the field.

  • View in gallery

    Melitaea cinxia caterpillars parasitized by H. horticola in eight host clusters (the two clusters parasitized by only one female are not represented here). Different shades of grey represent the proportion of parasitoid offspring mothered by different females in each host cluster. Striped grey represents offspring of unknown mothers (DNA not good enough for genotyping).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 29 29 12
Full Text Views 58 58 48
PDF Downloads 4 4 2
EPUB Downloads 0 0 0