Dominance hierarchies represent some of nature’s most rudimentary social structures, and aggression is key to their establishment in many animal species. Previous studies have focused on the relative influences of prior experience and physiological traits of individuals in determining social rank through aggression. Here we examine the behavioural potential for dominance hierarchy formation in the subsocial small carpenter bee, Ceratina calcarata. Both physiological traits and social experience were found to play partial roles in predicting future interactive behaviour in this species. Our results suggest that individual size is associated with dominance in initial encounters, while prior experience plays a larger role in predicting dominance in subsequent encounters. Social systems in the early stages of social evolution may well have followed these same predictive factors and these factors are key targets for future studies of social evolution and the behavioural origins of dominance hierarchies.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amsalem E., Shamia D., Hefetz A. (2013). Aggression or ovarian development as determinants of reproductive dominance in Bombus terrestris: interpretation using a simulation model. — Insect. Soc. 60: 213-222.
Amsalem E., Hefetz A. (2010). The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. — Behav. Ecol. Sociobiol. 64: 1685-1694.
Arneson L., Wcislo W.T. (2003). Dominant-subordinate relationships in a facultatively social nocturnal bee, Megalopta genalis (Hymenoptera: Halictidae). — J. Kans. Entomol. Soc. 76: 183-193.
Bang A., Gadagkar R. (2016). Winner–loser effects in a eusocial wasp. — Insect. Soc. 63: 349-352.
Bang A., Deshpande S., Sumana A., Gadagkar R. (2010). Choosing an appropriate index to construct dominance hierarchies in animal societies: a comparison of three indices. — Anim. Behav. 79: 631-636.
Bell W.J., Hawkins W.A. (1974). Patterns of intraspecific agonistic interactions involved in nest defense of a primitively eusocial halictine bee. — J. Comp. Physiol. 93: 183-193.
Berdoy M., Smith P., Macdonald D.W. (1995). Stability of social status in wild rats: age and the role of settled dominance. — Behaviour 132: 193-212.
Boesi R., Polidori C. (2011). Nest membership determines the levels of aggression and cooperation between females of a supposedly communal digger wasp. — Aggr. Behav. 37: 405-416.
Brace R.C., Pavey J., Quicke D.L.J. (1979). Intraspecific aggression in the colour morphs of the anemone Actinia equina: the ‘convention’ governing dominance ranking. — Anim. Behav. 27: 553-554.
Breed M.D., Silverman J.M., Bell W.J. (1978). Agonistic behaviour, social interactions, and behavioural specializations in a primitively eusocial bee. — Insect. Soc. 25: 351-364.
Brothers D.J., Michener C.D. (1974). Interactions in colonies of primitively social bees III: ethometry of division of labor in Lasioglossum zephyrum. — J. Comp. Physiol. 90: 129-168.
Cameron S.A., Jost M.C. (1998). Mediators of dominance and reproductive success among queens in the cyclically polygynous Neotropical bumble bee Bombus atratus Franklin. — Insect. Soc. 45: 135-149.
Chandrashekara K., Gadagkar R. (1991). Unmated queens in the primitively eusocial wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). — Insect. Soc. 38: 213-216.
Chase I.D., Tovey C., Spangler-Martin D., Manfredonia M. (2002). Individual differences versus social dynamics in the formation of animal dominance hierarchies. — Proc. Natl. Acad. Sci. USA 99: 5744-5749.
Daly H.V. (1966). Biological studies on Ceratina dallatoreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). — Ann. Entomol. Soc. Am. 59: 1138-1154.
Daws A.G., Grills J., Konzen K., Moore P.A. (2002). Previous experiences alter the outcome of aggressive interactions between males in the crayfish, Procambarus clarkii. — Mar. Freshw. Behav. Physiol. 35: 139-148.
Dukas R., Real L.A. (1991). Learning foraging tasks by bees: a comparison between social and solitary species. — Anim. Behav. 42: 269-276.
Earley R.L., Dugatkin L.A. (2006). Merging social hierarchies: effects on dominance rank in male green swordtail fish (Xiphophorus helleri). — Behav. Process. 73: 290-298.
Fewell J., Schmidt S.K., Taylor T. (2009). Division of labor in the context of complexity. — In: Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, MA, p. 483-502.
Flores-Prado L., Aguilera-Olivares D., Niemeyer H.M. (2008). Nest-mate recognition in Manuelia postica (Apidae: Xylocopinae): an eusocial trait is present in a solitary bee. — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 285-291.
Gadagkar R. (1980). Dominance hierarchy and the division of labor in the social wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). — Curr. Sci. 49: 772-775.
Garamszegi L.Z., Herczeg G. (2012). Behavioural syndromes, syndrome deviation and the within- and between-individual components of phenotypic correlations: when reality does not meet statistics. — Behav. Ecol. Sociobiol. 66: 1651-1658.
Heinze J., Oberstadt B. (1999). Worker age, size and social status in queenless colonies of the ant Leptothorax gredleri. — Anim. Behav. 58: 751-759.
Hiadlovská Z., Mikula O., Macholán M., Hamplová P., Vošlajerová Bímová B., Daniszová K. (2015). Shaking the myth: body mass, aggression, steroid hormones, and social dominance in wild house mouse. — Gen. Comp. Endocrinol. 223: 16-26.
Higashi S., Ito F., Sugiura N., Ohkawara K. (1994). Worker’s age regulates the linear dominance hierarchy in the queenless ponerine ant, Pachycondyla sublaevis (Hymenoptera: Formicidae). — Anim. Behav. 47: 179-184.
Hogendoorn K., Velthuis H.H.W. (1999). Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. — Insect. Soc. 46: 198-207.
Howard R.W. (1993). Cuticular hydrocarbons and chemical communication. — In: Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, Lincoln, NE.
Hsu Y., Earley R.L., Wolf L.L. (2006). Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. — Biol. Rev. 81: 33-74.
Hughes C.R., Strassmann J.E. (1988). Age is more important than size in determining dominance among workers in the primitively eusocial wasp, Polistes instabilis. — Behaviour 107: 1-14.
Huntingford F.A. (1976). The relationship between inter- and intra-specific aggression. — Anim. Behav. 24: 485-497.
Jandt J.M., Bengston S., Pinter-Wollman N., Pruitt J.N., Raine N.E., Dornhaus A., Sih A. (2013). Behavioural syndromes and social insects: personality at multiple levels. — Biol. Rev. 89: 48-67.
Jeanson R., Fewel J.H. (2008). Influence of the social context on division of labor in ant foundress associations. — Behav. Ecol. 19: 567-574.
Kasumovic M.M., Elias D.O., Punzalan D., Mason A.C., Andrade M.C.B. (2009). Experience affects the outcome of agonistic contests without affecting the selective advantage of size. — Anim. Behav. 77: 1533-1538.
Kim T., Zuk M. (2000). The effects of age and previous experience on social rank in female red junglefowl, Gallus gallus spadiceus. — Anim. Behav. 60: 239-244.
Kocher S.D., Paxton R.J. (2014). Comparative methods offer powerful insights into social evolution in bees. — Apidologie 45: 289-305.
Kukuk P.T. (1992). Social interactions and familiarity in a communal halictine bee Lasioglossum (Chilalictus) hemichalseum. — Ethology 91: 291-300.
Manfredini F., Riba-Grognuz O., Wurm Y., Keller L., Shoemaker D., Grozinger C.M. (2013). Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. — PLoS Genet. 9: e1003633.
Michener C.D. (1974). The social behaviour of the bees: a comparative study. — Harvard University Press, Cambridge, MA.
Michener C.D. (1985). From solitary to eusocial: need there be a series of intervening species? — In: Experimental behavioural ecology and sociobiology. Fischer, Stuttgart, p. 293-305.
Mueller U.G., Wolf-Mueller B. (1993). A method for estimating the age of bees: age-dependent wing wear and coloration in the wool-carder bee Anthidium manicatum (Hymenoptera: Megachilidae). — J. Insect Behav. 6: 529-537.
Pabalan N., Davey K.G., Packer L. (2000). Escalation of aggressive interactions during staged encounters in Halictus ligatus Say (Hymenoptera: Halictidae), with a comparison of circle tube behaviours with other halictine species. — J. Insect Behav. 13: 627-650.
Packer L. (2005). The influence of marking upon bee behaviour in circle tube experiments with a methodological comparison among studies. — Insect. Soc. 52: 139-146.
Packer L. (2006). Use of artificial arenas to predict the social organisation of halictine bees: data for fourteen species from Chile. — Insect. Soc. 53: 307-315.
Packer L., Coelho B.W.T., Mateus S., Zucchi R. (2003). Behavioural interactions among females of Halictus (Seladonia) lanei (Moure) (Hymenoptera: Halictidae). — J. Kans. Entomol. Soc. 76: 177-182.
Platt T.G., Queller D.C., Strassmann J.E. (2004). Aggression and worker control of caste fate in a multiple-queen wasp, Parachartergus colobopterus. — Anim. Behav. 67: 1-10.
R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna.
Rehan S.M., Richards M.H. (2010). Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae). — Can. Entomol. 142: 65-74.
Rehan S.M., Richards M.H. (2013). Reproductive aggression and nestmate recognition in a subsocial bee. — Anim. Behav. 85: 733-741.
Rehan S.M., Toth A.L. (2015). Climbing the social ladder: molecular evolution of sociality. — Trends Ecol. Evol. 30: 426-433.
Rehan S.M., Richards M.H., Schwarz M.P. (2009). Evidence of social nesting in Ceratina of Borneo. — J. Kans. Entomol. Soc. 82: 194-209.
Rehan S.M., Leys R., Schwarz M.P. (2012). A mid-Cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. — PLOS One 7: e34690.
Rehan S.M., Richards M.H., Schwarz M.P. (2010). Social polymorphism in the Australian small carpenter bee, Ceratina (Neoceratina) australensis. — Insect. Soc. 57: 403-412.
Rehan S.M., Schwarz M.P., Richards M.H. (2011). Fitness consequences of ecological constraints and implications for the evolution of sociality in an incipiently social bee. — Biol. J. Linn. Soc. 103: 57-67.
Rehan S.M., Richards M.H., Schwarz M.P. (2014). The costs and benefits of sociality in a facultatively social bee. — Anim. Behav. 97: 77-85.
Richards M.H., Packer L. (2010). Social behaviours in solitary bees: interactions among individuals in Xeralictus bicuspidariae Snelling (Hymenoptera: Halictidae: Rophitinae). — J. Hymenoptera Res. 19: 66-76.
Rowland W.J. (1989). The effects of body size, aggression and nuptial coloration on competition for territories in male threespine sticklebacks, Gasterosteus aculeatus. — Anim. Behav. 37: 282-289.
Rutberg A.T., Greenberg S.A. (1990). Dominance, aggression frequencies and modes of aggressive competition in feral pony mares. — Anim. Behav. 40: 322-331.
Rutte C., Taborsky M., Brinkhof M.W.G. (2006). What sets the odds of winning and losing? — Trends Ecol. Evol. 21: 16-21.
Sakagami S.F., Maeta Y. (1984). Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). — J. Kans. Entomol. Soc. 57: 639-656.
Sakagami S.F., Maeta Y. (1989). Compatibility and incompatibility of solitary life with eusociality in two normally solitary bees Ceratina japonica and Ceratina okinawana (Hymenoptera, Apoidea), with notes on the incipient phase of eusociality. — Jpn. J. Entomol. 57: 417-739.
Sakagami S.F., Maeta Y. (1995). Task allocation in artificially induced colonies of a basically solitary bee Ceratina (Ceratinidia) okinawa, with a comparison of sociality between Ceratina and Xylocopa (Hymenoptera, Anthophoridae, Xylocopinae). — Jpn. J. Entomol. 63: 115-150.
Schuett G.W. (1997). Body size and agonistic experience affect dominance and mating success in male copperheads. — Anim. Behav. 54: 213-224.
Seebacher F., Wilson R.S. (2007). Individual recognition in crayfish (Cherax dispar): the roles of strength and experience in deciding aggressive encounters. — Biol. Lett. 3: 471-474.
Sneddon L.U., Huntingford F.A., Taylor A.C. (1997). The influence of resource value on the agonistic behaviour of the shore crab, Carcinus maenas. — Mar. Freshw. Behav. Physiol. 30: 225-237.
Stevenson P.A., Dyakonova V., Rillich J., Schildberger K. (2005). Octopamine and experience-dependent modulation of aggression in crickets. — J. Neurosci. 25: 1431-1441.
Stevenson P.A., Rillich J. (2013). Isolation associated aggression: a consequence of recovery from defeat in a territorial animal. — PLOS One 8: e74965.
Stevenson P.A., Schildberger K. (2013). Mechanisms of experience dependent control of aggression in crickets. — Curr. Opin. Neurobiol. 23: 1-6.
Sumana A., Gadagkar R. (2001). The structure of dominance hierarchies in the primitively eusocial wasp Ropalidia marginata. — Ethol. Ecol. Evol. 13: 273-281.
Syme G.J. (1974). Competitive orders as measures of social dominance. — Anim. Behav. 22: 931-940.
Tanner C.J., Salali G.D., Jackson A.L. (2011). The ghost of social environments past: dominance relationships include current interactions and experience carried over from previous groups. — Biol. Lett. 7: 818-821.
Tokarz R.R. (1985). Body size as a factor determining dominance in staged agonistic encounters between male brown anoles (Anolis sagrei). — Anim. Behav. 33: 746-753.
van Doorn A. (2008). Factors influencing dominance behaviour in queenless bumblebee workers (Bombus terrestris). — Physiol. Entomol. 14: 211-221.
Wcislo W.T. (1997). Social interactions and behavioural context in a largely solitary bee, Lasioglossum (Dialictus) figueresi (Hymenoptera, Halictidae). — Insect. Soc. 44: 199-208.
West-Eberhard M.J. (1967). Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behaviour. — Science 157: 1584-1585.
West S.A., Griffin A.S., Gardner A. (2007). Evolutionary explanations for cooperation. — Curr. Biol. 17: R661-R672.
Whitehead H. (2008). Analyzing animal societies: quantitative methods for vertebrate social analysis. — University of Chicago Press, Chicago, IL.
Wilson E.O. (1971). The insect societies. — Harvard University Press, Cambridge, MA.
Wong M., Balshine S. (2011). Fight for your breeding right: hierarchy re-establishment predicts aggression in a social queue. — Biol. Lett. 7: 190-193.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 771 | 141 | 2 |
Full Text Views | 292 | 9 | 1 |
PDF Views & Downloads | 127 | 13 | 2 |
Dominance hierarchies represent some of nature’s most rudimentary social structures, and aggression is key to their establishment in many animal species. Previous studies have focused on the relative influences of prior experience and physiological traits of individuals in determining social rank through aggression. Here we examine the behavioural potential for dominance hierarchy formation in the subsocial small carpenter bee, Ceratina calcarata. Both physiological traits and social experience were found to play partial roles in predicting future interactive behaviour in this species. Our results suggest that individual size is associated with dominance in initial encounters, while prior experience plays a larger role in predicting dominance in subsequent encounters. Social systems in the early stages of social evolution may well have followed these same predictive factors and these factors are key targets for future studies of social evolution and the behavioural origins of dominance hierarchies.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 771 | 141 | 2 |
Full Text Views | 292 | 9 | 1 |
PDF Views & Downloads | 127 | 13 | 2 |