Positive relationship between risk-taking behaviour and aggression in subordinate but not dominant males of a Cuban poeciliid fish

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Studies of integrated phenotypes sometimes reveal correlations between mating effort, favoured by sexual selection, and risk-taking, favoured by survival selection. We used Girardinus metallicus to examine the relationship between rank order of mating effort and risk-taking. We measured risk-taking in a novel environment containing a predator. We then paired males, using aggression to assign dominant or subordinate status, and examined mating behaviour. Dominant males showed higher mating effort, but did not exhibit any relationship between risk-taking and mating effort. Subordinate males exhibited a cross-context correlation, as males were either more willing to take risks and aggressive or more hesitant to take risks and nonaggressive. Less risk-averse, aggressive subordinate males may gain fitness advantages in a more realistic dominance hierarchy, despite being outranked by the rival with which they were paired in our study. Results highlight intraspecific variation in behavioural correlations and the importance of social environment in shaping integrated phenotypes.



AgrilloC.DaddaM. (2007). Discrimination of the larger shoal in the poeciliid fish Girardinus falcatus. — Ethol. Ecol. Evol. 19: 145-157.

AriyomoT.O.WattP.J. (2012). The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. — Anim. Behav. 83: 41-46.

AriyomoT.O.WattP.J. (2013). Disassortative mating for boldness decreases reproductive success in the guppy. — Behav. Ecol. 24: 1320-1326.

BeckmannC.BiroP.A. (2013). On the validity of a single (boldness) assay in personality research. — Ethology 119: 937-947.

BellA.M. (2012). Randomized or fixed order for studies of behavioral syndromes?Behav. Ecol. 2012: 16-20.

BergmüllerR.TaborskyM. (2010). Animal personality due to social niche specialization. — Trends Ecol. Evol. 25: 505-511.

BleakleyB.H.BrodieE.D.III (2009). Indirect genetic effects influence antipredator behavior in guppies: estimates of the coefficient of interaction PSI and the inheritance of reciprocity. — Evolution 63: 1796-1806.

BorgB. (1994). Androgens in teleost fishes. — Comp. Biochem. Physiol. 109C: 219-245.

BridgerD.BonnerS.J.BriffaM. (2015). Individual quality and personality: bolder males are less fecund in the hermit crab Pagurus bernhardus. — Proc. Roy. Soc. Lond. B: Biol. Sci. 282: 20142492.

BrownC.JonesF.BraithwaiteV.A. (2007a). Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. — J. Fish Biol. 71: 1590-1601.

BrownC.BurgessF.BraithwaiteV. (2007b). Heritable and experiential effects on boldness in a tropical poeciliid. — Behav. Ecol. Sociobiol. 62: 237-243.

BurnsJ.G. (2008). The validity of three tests of temperament in guppies (Poecilia reticulata). — J. Comp. Psychol. 122: 344-356.

CarterA.J.FeeneyW.E.MarshallH.H.CowlishawG.HeinsohnR. (2013). Animal personality: what are behavioural ecologists measuring?. — Biol. Rev. 88: 465-475.

ChapmanB.B.MorrellL.J.KrauseJ. (2010). Unpredictability in food supply during early life influences boldness in fish. — Behav. Ecol. 21: 501-506.

CoteJ.FogartyS.WeinersmithK.BrodinT.SihA. (2010). Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 1571-1579.

DaddaM. (2015). Female social response to male sexual harassment in poeciliid fish: a comparison of six species. — Front. Psychol. 6: 1-9.

DochtermannN.A. (2010). Behavioral syndromes: carryover effects, false discovery rates, and a priori hypotheses. — Behav. Ecol. 21: 437-439.

DugatkinL.A. (1988). Do guppies play TIT FOR TAT during predator inspection visits. — Behav. Ecol. Sociobiol. 23: 395-399.

DugatkinL.A.GodinJ.-G.J. (1992a). Prey approaching predators: a cost-benefit perspective. — Ann. Zool. Fenn. 29: 233-252.

DugatkinL.A.GodinJ.-G.J. (1992b). Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy, Poecilia reticulata. — Environ. Biol. Fish. 34: 265-276.

EvansJ.P.PilastroA.SchluppI. (2011). Ecology and evolution of poeciliid fishes. — University of Chicago Press, Chicago, IL.

FarrJ.A. (1980). The effects of juvenile social interaction on growth rate, size and age at maturity, and adult social behavior in Girardinus metallicus Poey (Pisces: Poeciliidae). — Z. Tierpsychol. 52: 247-268.

GaramszegiL.Z.MarkóG.HerezegG. (2012). A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables. — Evol. Ecol. 26: 1213-1235.

GodinJ.-G.J.DavisS.A. (1995a). Who dares, benefits: predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. — Proc. Roy. Soc. Lond. B: Biol. Sci. 259: 193-200.

GodinJ.-G.J.DavisS.A. (1995b). Boldness and predator deterrence: a reply to Milinski and Boltschauser. — Proc. Roy. Soc. Lond. B: Biol. Sci. 262: 107-112.

GodinJ.-G.J.DugatkinL.A. (1996). Female mating preference for bold males in the guppy, Poecilia reticulata. — Proc. Natl. Acad. Sci. USA 93: 10262-10267.

HoudeA.E. (1997). Sex, color, and mate choice in guppies. — Princeton University Press, Princeton, NJ.

HuntJ.HoskenD. (2014). Genotype-by-environment interactions and sexual selection. — Wiley, Chichester.

KettersonE.D.NolanV.Jr. (1999). Adaptation, exaptation, and constraint: a hormonal perspective. — Am. Nat. 154: S4-S25.

KolluruG.R. (2014). Genotype-by-environment interaction and sexual selection in guppies. — In: The role of genotype-by-environment interactions in sexual selection ( HoskenD.J.HuntJ., eds). Wiley–Blackwell, Oxford, p.  282-311.

KolluruG.R.BertramS.M.ChinE.DunmeyerC.GravesJ. (2014). Mating behavior and its morphological correlates in two color morphs of Girardinus metallicus (Pisces: Poeciliidae), a species previously thought not to exhibit courtship display. — Behav. Process. 106: 44-52.

KolluruG.R.CastilloC.HendricksonM.HughesM.KrauseP.LePianeK.McCannC.PaviaE.PorterC.RodriguezR.Rodriguez-CabreraT.ScottE.WillrodtM.BertramS.M. (2015). Sexual selection in black morph Girardinus metallicus (Pisces: Poeciliidae): females can spot a winner (but we cannot). — Ethology 121: 112-124.

LikerA.BartaZ. (2002). The effects of dominance on social foraging tactic use in house sparrows. — Behaviour 139: 1061-1076.

LorenzenE. (1996). Polymorphismus männlicher Girardinus metallicus Poey, 1854 (Teleostei: Cyprinodontoidei: Poeciliidae), Verhalten der Aquarienfische. — In: Fortpflanzungsbiologie der Aquarienfische ( GrevenH.RiehlR., eds). Birgit Schmettkamp, Bornheim, p.  263-266.

MagellanK.MagurranA.E. (2007). Behavioural profiles: individual consistency in male mating behavior under varying sex ratios. — Anim. Behav. 74: 1545-1550.

McGlothlinJ.W.KettersonE.D. (2008). Hormone-mediated suites as adaptations and evolutionary constraints. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 363: 1611-1620.

OliveiraR.F. (2009). Social behavior in context: hormonal modulation of behavioral plasticity and social competence. — Integr. Comp. Biol. 49: 423-440.

OliveiraR.F. (2012). Social plasticity in fish: integrating mechanisms and function. — J. Fish Biol. 81: 2127-2150.

PolluxB.J.A.MeredithR.W.SpringerM.S.GarlandT.ReznickD.N. (2014). The evolution of the placenta drives a shift in sexual selection in livebearing fish. — Nature 513: 233-236.

Ponce de LeónJ.L.RodríguezR. (2010). Peces cubanos de la familia Poeciliidae. — Editorial Academia, La Habana.

Ponce de LeónJ.L.RodríguezR. (2013). Spatial segregation of freshwater fish in an intermittent Cuban stream. — Rev. Cub. Cienc. Biol. 2: 24-30.

PruittJ.N.RiechertS.E. (2012). The ecological consequences of temperament in spiders. — Curr. Zool. 58: 589-596.

SchuettW.TregenzaT.DallS.R. (2010). Sexual selection and animal personality. — Biol. Rev. 85: 217-246.

SedaJ.B.ChildressM.J.PtacekM. (2012). Individual variation in male size and behavioral repertoire in the sailfin molly Poecilia latipinna. — Ethology 118: 411-421.

SihA.BellA.M.JohnsonJ.C.ZiembaR.E. (2004a). Behavioral syndromes: an integrative overview. — Q. Rev. Biol. 79: 241-277.

SihA.BellA.M.JohnsonJ.C. (2004b). Behavioral syndromes: an ecological and evolutionary overview. — Trends Ecol. Evol. 19: 372-378.

SihA.CoteJ.EvansM.FogartyS.PruittJ. (2012). Ecological implications of behavioural syndromes. — Ecol. Lett. 15: 278-289.

SmithB.R.BlumsteinD.T. (2008). Fitness consequences of personality: a meta-analysis. — Behav. Ecol. 19: 448-455.

SmithB.R.BlumsteinD.T. (2010). Behavioral types as predictors of survival in Trinidadian guppies (Poecilia reticulata). — Behav. Ecol. 21: 919-926.

StampsJ.A.BriffaM.BiroP.A. (2012). Unpredictable animals: individual differences in intraindividual variability (IIV). — Anim. Behav. 83: 1325-1334.

WatanabeW.O.LosordoT.M.FitzsimmonsK.HanleyF. (2002). Tilapia production systems in the Americas: technological advances, trends, and challenges. — Rev. Fish. Sci. 10: 465-498.

WebsterM.M.WardA.J.W. (2011). Personality and social context. — Biol. Rev. 86: 759-773.

WilsonA.D.M.GodinJ.-G.J.WardA.J.W. (2010). Boldness and reproductive fitness correlates in the eastern mosquitofish, Gambusia holbrooki. — Ethology 116: 96-104.

WolfM.WeissingF.J. (2012). Animal personalities: consequences for ecology and evolution. — Trends Ecol. Evol. 27: 452-461.

WolfM.van DoornG.S.LeimarO.WeissingF.J. (2007). Life-history trade-offs favour the evolution of animal personalities. — Nature 447: 581-584.


  • Aquarium in which the risk-taking behaviour trials were conducted. Figure shows refuge (A) separated by trapdoor from open field compartment (B), which is separated by a fixed, perforated clear plastic partition from the predator compartment (C). Not drawn to scale. Drawing of G. metallicus male taken from Pollux et al. (2014). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

    View in gallery
  • Relationships between rank orders of behaviour principal component scores across the mating effort and risk-taking behaviour contexts (panels A, B, D and E) and within the mating effort context (panels C and F), for dominant (panels A–C; circles) and subordinate (panels D–F; squares) males.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 8
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0