Cognitive appraisal of aversive stimulus differs between individuals with contrasting stress coping styles; evidences from selected rainbow trout (Oncorhynchus mykiss) strains

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


In animals, personality variations in response to stress and energy demands have been established. Cognitive processing of negative stimuli correlates with stress response patterns. Still, the relative contribution of cognitive appraisal or physiological demands to the behavioural output needs to be clarified. In this study we utilized reactive (high-responsive, HR) and proactive (low-responsive, LR) rainbow trout strains to investigate how contrasting reactions to hypoxia are related to individual variation in metabolism and/or cognition. The HR-LR strains did not differ in standard metabolic rate or hypoxia tolerance. HR trout displayed more pronounced avoidance to a signal cue after being conditioned with hypoxia, suggesting that they experienced this stimulus more aversive than LR trout. Together with differences in forebrain c-fos activation patterns in dorsomedial pallium, these results suggest cognitive differences between the strains. These results demonstrate that differences in personality/stress coping style can be related to contrasts in cognition, which are independent of metabolic differences.



ArnottS.A.ChibaS.ConoverD.O. (2006). Evolution of intrinsic growth rate: metabolic costs drive trade-offs between growth and swimming performance in Menidia menidia. — Evolution 60: 1269-1278.

BasicD.WinbergS.SchjoldenJ.KrogdahlA.HöglundE. (2012). Context-dependent responses to novelty in Rainbow trout (Oncorhynchus mykiss), selected for high and low post-stress cortisol responsiveness. — Physiol. Behav. 105: 1175-1181.

BiroP.A.StampsJ.A. (2008). Are animal personality traits linked to life-history productivity?Trends Ecol. Evol. 23: 361-368.

BiroP.A.StampsJ.A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?Trends Ecol. Evol. 25: 653-659.

BrelinD.PettersonE.WinbergS. (2005). Divergent stress coping styles in juvenile brown trout (Salmo trutta). — N.Y. Acad. Sci. 1040: 239-245.

BrownC. (2015). Fish intelligence, sentience and ethics. — Anim. Cogn. 18: 1-17.

BurmeisterS.S.FernaldR.D. (2005). Evolutionary conservation of the egr-1 immediate-early gene response in a teleost. — J. Comp. Neurol. 481: 220-232.

CareauV.ThomasD.HumphriesM.M.RéaleD. (2008). Energy metabolism and animal personality. — Oikos 117: 641-653.

CareauV.ThomasD.PelletierF.TurkiL.LandryF.GarantD.RéaleD. (2011). Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). — J. Evol. Biol. 24: 2153-2163.

CarereC.LocurtoC. (2011). Interaction between animal personality and animal cognition. — Curr. Zool. 57: 491-498.

CastanheiraM.F.HerreraM.CostasB.ConceicaoL.E.C.MartinsC.I.M. (2013). Can we predict personality in fish? Searching for consistency over time and across contexts. — PLoS One 8: e62037.

ChibaS.ArnottS.A.ConoverD.O. (2007). Coevolution of foraging behavior with intrinsic growth rate: risk-taking in naturally and artificially selected growth genotypes of Menidia menidia. — Ecologia 154: 237-246.

ClarkeA.S.BoinskiS. (1995). Temperament in nonhuman primates. — Am. J. Primatol. 37: 103-125. BoerS.F.KoolhaasJ.M. (2010). Coping styles and behavioural flexibility: towards underlying mechanisms. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 365: 4021-4028.

CunninghamC.L.GremelC.M.GroblewskiP.A. (2006). Drug-induced conditioned place preference and aversion in mice. — Nature Protocols 4: 1662-1670.

DarlandT.DowlingJ.E. (2001). Behavioral screening for cocaine sensitivity in mutagenized zebrafish. — Proc. Natl. Acad. Sci. USA 98: 11691-11696.

DemskiL.S. (2013). The pallium and mind/behavior relationships in teleost fishes. — Brain Behav. Evol. 82: 31-44.

EbbessonL.O.E.NilsenT.O.HelvikJ.V.TronciV.StefanssonS.O. (2011). Corticotropin-releasing factor neurogenesis during midlife development in salmon: genetic, environmental and thyroid hormone regulation. — J. Neuroendocrinol. 23: 733-741.

GoodsonJ.L.KingsburyM.A. (2013). What’s in a name? Considerations of homologies and nomenclature for vertebrate social behavior networks. — Horm. Behav. 64: 103-112.

GoslingS.D. (2001). From mice to men: what can we learn about personality from animal research?Psychol. Bull. 127: 45-86.

GroothuisT.G.G.CarereC. (2005). Avian personalities: characterization and epigenesis. — Neurosci. Biobehav. Rev. 29: 137-150.

HöglundE.GjøenH.M.PottingerT.G.ØverliØ. (2008). Parental stress-coping styles affect the behaviour of rainbow trout Oncorhynchus mykiss at early developmental stages. — J. Fish Biol. 73: 1764-1769.

HuntingfordF.A.AndrewG.MackenzieS.MoreraD.CoyleS.M.PilarczykM.KadriS. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. — J. Fish Biol. 76: 1576-1591.

JenjanH.MesquitaF.HuntingfordF.AdamsC. (2013). Respiratory function in common carp with different stress coping styles: a hidden cost of personality traits?Anim. Behav. 85: 1245-1249.

KillenS.S.MarrasS.RyanM.R.DomeniciP.McKenzieD.J. (2012). A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. — Funct. Ecol. 26: 134-143. BroerS.F.CoppensC.M.BuwaldaB. (2010). Neuroendocrinology of coping styles: towards understanding the biology of individual variation. — Front. Neurocrinol. 31: 307-321. BoerS.F.van der VegtB.J.van JongI.C.RuisM.A.W.BlokhuisH.J. (1999). Coping styles in animals: current status in behavior and stress-physiology. — Neurosci. Biobehav. Rev. 23: 925-935.

KorteS.M.KoolhaasJ.M.WingfieldJ.C.McEwenB.S. (2005). The Darwinian concept of stress: benefits of allostasis and cost of allostatic load and the trade-offs in health and disease. — Neurosci. Biobehav. Rev. 29: 3-38.

KovácsK.J. (1998). c-Fos as a transcription factor: a stressful (re)view from a functional map. — Neurochem. Int. 33: 287-297.

KovácsK.J. (2008). Measurement of immediate-early gene activation — c-fos and beyond. — J. Neuroendocrinol. 20: 665-672.

LauB.BretaudS.HuangY.LinE.GuoS. (2005). Dissociation of food and opiate preference by a genetic mutation in zebrafish. — Genes Brain Behav. 5: 497-505.

LauB.Y.B.MathurP.GouldG.G.GuoS. (2011). Identification of a brain center whose activity discriminates a choice behavior in zebrafish. — Proc. Natl. Acad. Sci. USA 108: 2581-2586. Lourdes Ruiz-GomezM.WinbergS.HöglundE. (2011). Behavioral responses to hypoxia provide a non-invasive method for distinguishing between stress coping styles in fish. — Anim. Behav. Sci. 132: 211-216.

MarquesI.J.LeitoJ.T.D.SpainkH.P.TesterinkJ.JaspersR.T.WitteF.van den BergS.BagowskiC.P. (2008). Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. — J. Comp. Physiol B 178: 77-92.

MartinsC.I.M.CanstanheiraM.F.EngrolaS.CostasB.ConceicaoL.E.C. (2011). Individual diffeences in metabolism predict coping styles in fish. — Appl. Anim. Behav. Sci. 130: 135-143.

MathurP.LauB.GuoS. (2011). Conditioned place preference behavior in zebrafish. — Nature Protocols 6: 338-345.

MattioliR.NelsonC.A.HustonJ.P.SpielerE. (1998). Conditioned place preference analysis in the goldfish with the H1 histamine antagonist chlorpheniramine. — Brain Res. Bull. 45: 41-44.

MaximinoC.LimaM.G.OliveiraK.R.M.BatistaE.J.O.HerculanoA.M. (2013). “Limbic associative” and “autonomic” amygdala in teleosts: a review of the evidence. — J. Chem. Neuroanal. 48-49: 1-13.

MetcalfeN.B.Van LeeuwenT.E.KillenS.S. (2016). Does individual variation in metabolic phenotype predict fish behaviour and performance?J. Fish Biol. 88: 298-321.

MillotS.CerqueiraM.CanstanheiraM.F.ØverliØ.MartinsC.I.M.OliveiraR.F. (2014a). Use of conditioned place preference/avoidance tests to assess affective states in fish. — Appl. Anim. Behav. Sci. 154: 104-111.

MillotS.CerqueiraM.CanstanheiraM.F.ØverliØ.OliveiraR.F.MartinsC.I.M. (2014b). Behavioural stress responses predict environmental perception in European sea bass (Dicentrarchus labrax). — PLoS One 9: e108800.

MøllerA.P. (2009). Basal metabolic rate and risk-taking behaviour in birds. — J. Evol. Biol. 22: 2420-2429. WitH. (2011). Conditioned place preference in rodents and humans. — Neuromethods 50: 133-152.

NinkovicJ.Bally-CuifJ. (2005). The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. — Sci. Direct Methods 39: 262-274.

O’ConnellL.A.HofmannH.A. (2011). The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. — J. Comp. Neurol. 519: 3599-3639.

O’ConnellL.A.HofmannH.A. (2012). Evolution of a vertebrate social decision making network. — Science 336: 1154-1157.

O’ConnellL.A.RigneyM.M.DykstraD.W.HofmannH.A. (2013). Neuroendocrine mechanisms underlying sensory integration of social signals. — J. Neuroendocrinol. 25: 644-654.

ØverliØ.SørensenC.PulmanK.G.T.PottingerT.G.KorzanW.SummersC.H.NilssonG.E. (2007). Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. — Neurosci. Biobehav. Rev. 31: 396-412.

ØverliØ.WinbergS.PottingerT.G. (2005). Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout — a review. — Integr. Comp. Biol. 45: 463-474.

ParmarA.ParmarM.BrennanH.C. (2011). Zebrafish conditioned place preference models of drug reinforcement and relapse to drug seeking. — In: Zebrafish neurobehavior protocols ( KalueffA.CachatM., eds). Springer, Berlin, p.  75-84.

PhillipsM.L.DrevetsW.C.RauchS.L.LaneR. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. — Biol. Psychiatr. 54: 504-514.

PortavellaM.DuranE.GomezY.TorresB.SalasC. (1998). Dorsomedial but not dorsolateral ablations disrupt avoidance response in a two-way active avoidance learning task in goldfish (Carassius auratus). — Eur. J. Neurosci. 10: 156-166.

PortavellaM.TorresB.SalasC. (2004). Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. — J. Neurosci. 24: 2335-2342.

PortavellaM.VargasJ.P. (2005). Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. — Euro. J. Neurosci. 21: 2800-2806.

PortavellaM.VargasB.TorresB.SalasC. (2002). The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. — Brain Res. Bull. 57: 397-399.

PottingerT.G.CarrickT.R. (1999). Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. — Gen. Comp. Endocrinol. 116: 122-132.

PrusA.J.JamesJ.R.RosecransJ.A. (2009). Conditioned place preference. — In: Methods of behavior analysis in neuroscience ( BoccafuscoJ.J., ed.). CRC Press, Boca Raton, FL, p.  59-76.

RéaleD.GarantD.HumphriesM.M.BergeronP.CareauV.MontiglioP.O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 365: 4051-4063.

RéaleD.ReaderS.M.SolD.McDougallP.T.DingemanseN.J. (2007). Integrating animal temperament within ecology and evolution. — Biol. Rev. 82: 291-318.

Ruiz-GomezM.L.HuntingfordF.A.ØverliØ.ThörnqvistP.O.HöglungE. (2011). Response to environmental change in rainbow trout selected for divergent stress coping styles. — Physiol. Behav. 102: 317-322.

SihA.BellA.JohnsonJ.C. (2004). Behavioral syndromes: an ecological and evolutionary overview. — Trends Ecol. Evol. 19: 372-378.

SilvaP.I.M.MartinsC.I.M.KhanU.W.GjøenH.M.ØverliØ.HöglundE. (2015). Stress and fear responses in the teleost pallium. — Physiol. Behav. 141: 17-22.

SkovP.V.LarsenB.K.FriskM.JokumsenA. (2011). Effects of rearing density and water current on the res-piratory physiology and haematology in rainbow trout, Oncorhynchus mykiss at high temperature. — Aquaculture 319: 446-452.

SluyterF.KorteS.M.BohusB.van OortmerssenG.A. (1996). Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test. — Pharmacol. Biochem. Behav. 54: 113-116.

StampsJ.GroothuisT.G.G. (2010). The development of animal personality: relevance, concepts and perspectives. — Biol. Rev. 85: 301-325.

SteffensenJ.F.JohansenK.BushnellP.G. (1984). An automated swimming respirometer. — Comp. Biochem. Physiol. 79: 437-440.

StriedterG.F.BelgardT.G.ChenC.C.DavisF.P.FinlayB.L.GüntürkünO.HaleM.E.HarrisJ.A.HechtE.E.HofP.R.HofmannH.A.HollandL.Z.IwaniukA.N.JarvisE.D.KartenH.J.KatzP.S.KristanW.B.MacagnoE.R.MitraP.P.MorozL.L.PreussT.M.RagsdaleC.W.SherwoodC.C.StevensC.F.StüttgenM.C.TsumotoT.WilczynskiW. (2014). NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. — J. Comp. Neurol. 522: 1445-1453.

ThörnqvistP.O.HöglundE.WinbergS. (2015). Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar). — J. Exp. Biol. 218: 1077-1083.

TzschentkeT.M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. — Addict. Biol. 12: 227-462.

van RaaijM.T.M.PitD.S.S.BalmP.H.M.SteffensA.B.van den ThillartG.E.E.J.M. (1996). Behavioral strategy and the physiological stress response in rainbow trout exposed to servere hypoxia. — Horm. Behav. 30: 85-92.

VargasJ.P.LópezJ.C.PortavellaM. (2009). What are the functions of fish brain pallium?Brain Res. Bull. 79: 436-440.

VindasM.A.JohansenI.B.Vela-AvituaS.NørstrudK.S.AalgaardM.BraastadB.O.HöglundE.ØverliØ. (2014). Frustrative reward omission increase aggressive behaviour of inferior fighters. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20140300.

WilsonD.S.ClarkA.B.ColemanK.DearstyneT. (1994). Shyness and boldness in humans and other animals. — Trends Ecol. Evol. 9: 442-446.

WolfM.van DoornG.S.WeissingF.J. (2008). Evolutionary emergence of responsive and unresponsive personalities. — Proc. Natl. Acad. Sci. USA 105: 15825-15830.

WullimannM.F.MuellerT. (2004). Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. — J. Comp. Neurol. 475: 143-162.


  • Conditioned place avoidance (CPA) experimental procedure. The aquarium could be divided into sections and the background patterns of the bottom; backside and the short sides were exchangeable. (A) During the initial preference phase, fish were left to swim freely throughout the tank with both striped and dotted wall patterns displayed on each side of the tank. (B) During conditioning to hypoxia, fish were exposed to either the striped or the spotted background patterns, during 8 sessions. (C) CPA test, the procedure for initial preference was repeated. This figure is published in colour in the online edition of this journal, which can be accessed via

    View in gallery
  • Time (min) spent on the side of the aquarium with the conditioned stimulus (CS) before and after being conditioned to hypoxia in HR/reactive (A) and LR/proactive (B) rainbow trout strains. The CPA test results was analysed by dividing the initial and conditioned preferences tests into 3 intervals of 3 min. An asterisk indicates a significant difference in place preference (P<0.05, N=13 HR and 12 LR).

    View in gallery
  • c-fos neuronal forebrain activity in response to hypoxia in HR (white) and LR (grey) rainbow trout strains, showing traits resembling the proactive and reactive stress coping style respectively. An asterix indicates a significant difference (p<0.05).

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 6
Full Text Views 4 4 4
PDF Downloads 1 1 1
EPUB Downloads 0 0 0