Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Within many species, some individuals are consistently more aggressive than others. We examine whether there are differences in brain gene expression between aggressive versus nonaggressive behavioural types of individuals within a natural population of male three-spined sticklebacks (Gasterosteus aculeatus). We compared gene expression profiles of aggressive male sticklebacks to nonaggressive males in four regions of the brain (brainstem, cerebellum, diencephalon and telencephalon). Relatively few genes were differentially expressed between behavioural types in telencephalon, cerebellum and diencephalon, but hundreds of genes were differentially expressed in brainstem, a brain area involved in detecting threats. Six genes that were differentially expressed in response to a territorial intrusion in a previous study were also differentially expressed between behavioural types in this study, implying primarily non-shared but some shared molecular mechanisms. Our findings offer new insights into the molecular causes and correlates of behavioural plasticity and individual variation in behaviour.

Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks

in Behaviour

Sections

References

AlauxC.SinhaS.HasadsriL.HuntG.J.Guzman-NovoaE.DeGrandi-HoffmanG.Uribe-RubioJ.L.SoutheyB.R.Rodriguez-ZasS.RobinsonG.E. (2009). Honey bee aggression supports a link between gene regulation and behavioral evolution. — Proc. Natl. Acad. Sci. USA 106: 15400-15405.

AlexaA.RahnenfuhrerJ. (2010). topGO: topGO: enrichment analysis for gene ontology. R package version 2.22.0. — R Foundation for Statistical Computing Vienna.

AnholtR.R.MackayT.F. (2012). Genetics of aggression. — Annu. Rev. Genet. 46: 145-164.

ArnoldC.TaborskyB. (2010). Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. — Anim. Behav. 79: 621-630.

Aubin-HorthN.DeschenesM.CloutierS. (2012). Natural variation in the molecular stress network correlates with a behavioural syndrome. — Horm. Behav. 61: 140-146.

Aubin-HorthN.LandryC.R.LetcherB.H.HofmannH.A. (2005). Alternative life histories shape brain gene expression profiles in males of the same population. — Proc. Roy. Soc. Lond. B: Biol. Sci. 272: 1655-1662.

Aubin-HorthN.RennS.C. (2009). Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. — Mol. Ecol. 18: 3763-3780.

BakkerT.C.M. (1986). Aggressiveness in sticklebacks (Gasterosteus aculeatus L.): a behaviour-genetic study. — Behaviour 98: 1-144.

BellA.M.BackstromT.HuntingfordF.A.PottingerT.G.WinbergS. (2007). Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. — Physiol. Behav. 91: 15-25.

BellA.M.RobinsonG.E. (2011). Behavior and the dynamic genome. — Science 332: 1161-1162.

BentzA.B.NavaraK.J.SieffermanL. (2013). Phenotypic plasticity in response to breeding density in tree swallows: an adaptive maternal effect?Horm. Behav. 64: 729-736.

BinderE.B.BradleyR.G.LiuW.EpsteinM.P.DeveauT.C.MercerK.B.TangY.GillespieC.F.HeimC.M.NemeroffC.B.SchwartzA.C.CubellsJ.F.ResslerK.J. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. — J. Am. Med. Ass. 299: 1291-1305.

BuitenhuisA.J.KjaerJ.B. (2008). Long term selection for reduced or increased pecking behaviour in laying hens. — World Poultry Sci. J. 64: 477-487.

CardosoS.D.TelesM.C.OliveiraR.F. (2015). Neurogenomic mechanisms of social plasticity. — J. Exp. Biol. 218: 140-149.

ChandrasekaranS.RittschofC.C.DjukovicD.GuH.RafteryD.PriceN.D.RobinsonG.E. (2015). Aggression is associated with aerobic glycolysis in the honey bee brain. — Genes Brain Behav. 14: 158-166.

CurnoO.BehnkeJ.M.McElligottA.G.ReaderT.BarnardC. (2009). Mothers produce less aggressive sons with altered immunity when there is a threat of disease during pregnancy. — Proc. Roy. Soc. Lond. B: Biol. Sci. 276: 1047-1054.

DierickH.A.GreenspanR.J. (2006). Molecular analysis of flies selected for aggressive behavior. — Nature Genet. 38: 1023-1031.

EdenbrowM.CroftD.P. (2013). Environmental and genetic effects shape the development of personality traits in the mangrove killifish Kryptolebias marmoratus. — Oikos 122: 667-681.

EdwardsA.C.AyrolesJ.F.StoneE.A.CarboneM.A.LymanR.F.MackayT.F. (2009). A transcriptional network associated with natural variation in Drosophila aggressive behavior. — Genome Biol. 10: R76.

EdwardsA.C.RollmannS.M.MorganT.J.MackayT.F. (2006). Quantitative genomics of aggressive behavior in Drosophila melanogaster. — PLoS Genet. 2: e154.

FeldkerD.E.DatsonN.A.VeenemaA.H.ProutskiV.LathouwersD.De KloetE.R.VreugdenhilE. (2003). GeneChip analysis of hippocampal gene expression profiles of short- and long-attack-latency mice: technical and biological implications. — J. Neurosci. Res. 74: 701-716.

FilbyA.L.PaullG.C.HickmoreT.F.TylerC.R. (2010). Unravelling the neurophysiological basis of aggression in a fish model. — BMC Genom. 11: 498.

FraserB.A.JanowitzI.ThairuM.TravisJ.HughesK.A. (2014). Phenotypic and genomic plasticity of alternative male reproductive tactics in sailfin mollies. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20132310.

GiancolaP.R. (1995). Evidence for dorsolateral and orbital prefrontal cortical involvement in the expression of aggressive behavior. — Aggr. Behav. 21: 431-450.

GodwinJ.ThompsonR. (2012). Nonapeptides and social behavior in fishes. — Horm. Behav. 61: 230-238.

GoodsonJ.L.Adkins-ReganE. (1999). Effect of intraseptal vasotocin and vasoactive intestinal polypeptide infusions on courtship song and aggression in the male zebra finch (Taeniopygia guttata). — J. Neuroendocrinol. 11: 19-25.

GoodsonJ.L.KellyA.M.KingsburyM.A.ThompsonR.R. (2012). An aggression-specific cell type in the anterior hypothalamus of finches. — Proc. Natl. Acad. Sci. USA 109: 13847-13852.

HarrisJ.A. (1996). Descending antinociceptive mechanisms in the brainstem: their role in the animal’s defensive system. — J. Physiol. 90: 15-25.

HeyneH.O.LautenschlagerS.NelsonR.BesnierF.RotivalM.CaganA.KozhemyakinaR.PlyusninaI.Z.TrutL.CarlborgO.PetrettoE.KruglyakL.PaaboS.SchonebergT.AlbertF.W. (2014). Genetic influences on brain gene expression in rats selected for tameness and aggression. — Genetics 198: 1277-1290.

HuffmanL.S.HinzF.I.WojcikS.Aubin-HorthN.HofmannH.A. (2015). Arginine vasotocin regulates social ascent in the African cichlid fish, Astatotilapia burtoni. — Gen. Comp. Endocrinol. 212: 106-213.

HuntingfordF.A.TurnerA.K.DownieL.M. (1987). Animal conflict. — Chapman & Hall/CRCBoca Raton, FL.

KanarikM.AlttoaA.MatrovD.KoivK.SharpT.PankseppJ.HarroJ. (2011). Brain responses to chronic social defeat stress: effects on regional oxidative metabolism as a function of a hedonic trait, and gene expression in susceptible and resilient rats. — Eur. Neuropsychopharmacol. 21: 92-107.

KlengelT.MehtaD.AnackerC.Rex-HaffnerM.PruessnerJ.C.ParianteC.M.PaceT.W.W.MercerK.B.MaybergH.S.BradleyB.NemeroffC.B.HolsboerF.HeimC.M.ResslerK.J.ReinT.BinderE.B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. — Nature Neurosci. 16: 33-41.

KleszczynskaA.SokolowskaE.KulczykowskaE. (2012). Variation in brain arginine vasotocin (AVT) and isotocin (IT) levels with reproductive stage and social status in males of three-spined stickleback (Gasterosteus aculeatus). — Gen. Comp. Endocrinol. 175: 290-296.

KroesR.A.PankseppJ.BurgdorfJ.OttoN.J.MoskalJ.R. (2006). Modeling depression: social dominance-submission gene expression patterns in rat neocortex. — Neuroscience 137: 37-49.

KukekovaA.V.JohnsonJ.L.TeilingC.LiL.OskinaI.N.KharlamovaA.V.GulevichR.G.PadteR.DubreuilM.M.VladimirovaA.V.ShepelevaD.V.ShikhevichS.G.SunQ.PonnalaL.TemnykhS.V.TrutL.N.AclandG.M. (2011). Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes). — BMC Genom. 12: 482.

LemaS.C.SandersK.E.WaltiK.A. (2015). Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. — J. Neuroendocrinol. 27: 142-157.

LiddellB.J.BrownK.J.KempA.H.BartonM.J.DasP.PedutoA.GordonE.WilliamsL.M. (2005). A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. — NeuroImage 24: 235-243.

LinD.BoyleM.P.DollarP.LeeH.LeinE.S.PeronaP.AndersonD.J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. — Nature 470: 221-226.

MiczekK.A.de AlmeidaR.M.KravitzE.A.RissmanE.F.de BoerS.F.RaineA. (2007). Neurobiology of escalated aggression and violence. — J. Neurosci. 27: 11803-11806.

MisslinR. (2003). The defense system of fear: behavior and neurocircuitry. — Clin. Neurophysiol. 33: 55-66.

MuhieS.GautamA.MeyerhoffJ.ChakrabortyN.HammamiehR.JettM. (2015). Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder. — Mol. Brain 8: 14.

MukaiM.ReplogleK.DrnevichJ.WangG.WackerD.BandM.ClaytonD.F.WingfieldJ.C. (2009). Seasonal differences of gene expression profiles in song sparrow (Melospiza melodia) hypothalamus in relation to territorial aggression. — PLoS ONE 4: e8182.

OldfieldR.G.HarrisR.M.HofmannH.A. (2015). Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. — Front. Zool. 12: S16.

OldfieldR.G.HofmannH.A. (2011). Neuropeptide regulation of social behavior in a monogamous cichlid fish. — Physiol. Behav. 102: 296-303.

OliveiraR.F.SimõesJ.M.TelesM.C.OliveiraC.R.BeckerJ.D.LopesJ.S. (2016). Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain. — Proc. Natl. Acad. Sci. USA 113: E654-E661.

ProvencalN.BooijL.TremblayR.E. (2015). The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity. — J. Exp. Biol. 218: 123-133.

RealeD.ReaderS.M.SolD.McDougallP.T.DingemanseN.J. (2007). Integrating animal temperament within ecology and evolution. — Biol. Rev. 82: 291-318.

RedmondD.E.Jr.HuangY.H. (1979). Current concepts. II. New evidence for a locus coeruleus-norepinephrine connection with anxiety. — Life Sci. 25: 2149-2162.

RennS.C.Aubin-HorthN.HofmannH.A. (2008). Fish and chips: functional genomics of social plasticity in an African cichlid fish. — J. Exp. Biol. 211: 3041-3056.

RittschofC.C.BukhariS.A.SloofmanL.G.TroyJ.M.Caetano-AnolleD.Cash-AhmedA.KentM.LuX.C.SanogoY.O.WeisnerP.A.ZhangH.M.BellA.M.MaJ.SinhaS.RobinsonG.E.StubbsL. (2014). Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. — Proc. Natl. Acad. Sci. USA 111: 17929-17934.

SanogoY.O.BandM.BlattiC.SinhaS.BellA.M. (2012). Transcriptional regulation of brain gene expression in response to a territorial intrusion. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 4929-4938.

SanogoY.O.HankisonS.BandM.ObregonA.BellA.M. (2011). Brain transcriptomic response of threespine sticklebacks to cues of a predator. — Brain Behav. Evol. 77: 270-285.

SantangeloN.BassA.H. (2010). Individual behavioral and neuronal phenotypes for arginine vasotocin mediated courtship and aggression in a territorial teleost. — Brain Behav. Evol. 75: 282-291.

SchumerM.KrishnakantK.RennS.C. (2011). Comparative gene expression profiles for highly similar aggressive phenotypes in male and female cichlid fishes (Julidochromis). — J. Exp. Biol. 214: 3269-3278.

SchunterC.VollmerS.V.MacphersonE.PascualM. (2014). Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. — BMC Genet. 15: 167.

ShorterJ.CouchC.HuangW.CarboneM.A.PeifferJ.AnholtR.R.H.MackayT.F.C. (2015). Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior. — Proc. Natl. Acad. Sci. USA 112: E3555-E3563.

SluyterF.BultA.LynchC.B.Van OortmerssenG.A.KoolhaasJ.M. (1995). A comparison between house mouse lines selected for attack latency or nest-building: evidence for a genetic basis of alternative behavioral strategies. — Behav. Genet. 25: 247-252.

SmythG.K. (2005). Limma: linear models for microarray data. — In: Bioinformatics and computational biology solutions using R and bioconductor. SpringerNew York, NY p.  397-420.

SmythG.K.AltmanN.S. (2013). Separate-channel analysis of two-channel microarrays: recovering inter-spot information. — BMC Bioinformat. 14: 165.

SneddonL.SchmidtR.FangY.CossinsA. (2011). Molecular correlates of social dominance: a novel role for ependymin in aggression. — PLoS ONE 6: e18181.

StiverK.A.HarrisR.M.TownsendJ.P.HofmannH.A.AlonzoS.H. (2015). Neural gene expression profiles and androgen levels underlie alternative reproductive tactics in the ocellated wrasse, Symphodus ocellatus. — Ethology 121: 152-167.

SupekF.BošnjakM.ŠkuncaN.ŠmucT. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. — PLoS One 6: e21800.

TakahashiA.QuadrosI.M.de AlmeidaR.M.MiczekK.A. (2012). Behavioral and pharmacogenetics of aggressive behavior. — Curr. Top. Behav. Neurosci. 12: 73-138.

TinbergenN. (1972). The animal in its world explorations of an ethologist. — Harvard University PressCambridge, MA.

UntergasserG.MartowiczA.HermannM.TochterleS.MeyerD. (2011). Distinct expression patterns of Dickkopf genes during late embryonic development of Danio rerio. — Gene Expr. Patterns 11: 491-500.

WangL.M.DankertH.PeronaP.AndersonD.J. (2008). A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. — Proc. Natl. Acad. Sci. USA 105: 5657-5663.

West-EberhardM.J. (2003). Developmental plasticity and evolution. — Oxford University PressOxford.

WoottonR.J. (1984). A functional biology of sticklebacks. — University of California PressBerkeley, CA.

YokoiS.OkuyamaT.KameiY.NaruseK.TaniguchiY.AnsaiS.KinoshitaM.YoungL.J.TakemoriN.KuboT.TakeuchiH. (2015). An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). — PLoS Genet. 11: e1005009.

ZannasA.S.BinderE.B. (2014). Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. — Genes Brain Behav. 13: 25-37.

ZayedA.RobinsonG.E. (2012). Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. — Annu. Rev. Genet. 46: 591-615.

Figures

  • View in gallery

    Differences in aggressive behaviour (latency to bite the intruder) between aggressive (red) and nonaggressive (green) individuals. Each line represents the behaviour of a different individual across the four observation periods. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Differences in aggressive behaviour (number of bites at the intruder) between aggressive (red) and nonaggressive (green) individuals. Each line represents the behaviour of a different individual across the four observation periods. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Venn diagram showing numbers of differentially expressed transcripts between aggressive and nonaggressive individuals within each brain region, and the overlap between them. BS: brainstem; C: cerebellum; D: diencephalon; T: telencephalon. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    GO results. Molecular functions and biological processes enriched in the set of genes that were differentially expressed between aggressive and nonaggressive individuals in brainstem. The bubble scatter plots show GO clusters with representatives noted. Similarity within clusters represents functional similarity computed among two GO terms using ‘simRel’ scores (Supek et al., 2011). The X and Y axes were calculated by applying multidimensional scaling to a matrix of the GO terms’ similarities. Color represents log(p-value), whereas size corresponds to GO size (frequency) in the GOA database. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 9
Full Text Views 10 10 9
PDF Downloads 2 2 2
EPUB Downloads 0 0 0