The wolf spider Pardosa milvina detects predator threat level using only vibratory cues

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Predators may inadvertently signal their presence and threat level by way of signals in multiple modalities. We used a spider, Pardosa milvina, known to respond adaptively to chemotactile predator cues (i.e., silk, faeces and other excreta) to evaluate whether it could also discriminate predation risk from isolated vibratory cues. Vibrations from its prey, conspecifics, and predators (Tigrosa helluo and Scarites quadriceps) were recorded and played back to Pardosa. In addition, we recorded predator vibrations with and without access to chemotactile cues from Pardosa, indicating the presence of prey. Pardosa did not appear to discriminate between vibrations from prey or conspecifics, but the response to predators depended on the presence of cues from Pardosa. Vibrations from predators with access to chemotactile cues from prey induced reductions in Pardosa activity. Predator cues typically occur in multiple modalities, but prey are capable of imperfectly evaluating predation risk using a limited subset of information.



AbdiH.WilliamsL.J. (2010). Principal component analysis. — Comp. Stat. 2: 433-459.

BarnesM.C.PersonsM.H.RypstraA.L. (2002). The effect of predator chemical cue age on antipredator behavior in the wolf spider Pardosa milvina (Araneae: Lycosidae). — J. Insect Behav. 15: 269-281.

BarthF.G. (2002). A spider’s world: senses and behavior. — Springer, Berlin.

BellR.D.RypstraA.L.PersonsM.H. (2006). The effect of predator hunger on chemically mediated antipredator responses and survival in the wolf spider Pardosa milvina (Araneae: Lycosidae). — Ethology 112: 903-910.

BrownellP.H. (1977). Compressional and surface waves in sand: used by desert scorpions to locate prey. — Science 197: 479-482.

CaldwellM.S.McDanielJ.G.WarkentinK.M. (2010). Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. — Anim. Behav. 79: 255-260.

CastellanosI.BarbosaP. (2006). Evaluation of predation risk by a caterpillar using substrate-borne vibrations. — Anim. Behav. 72: 461-469.

CrawfordB.A.HickmanC.R.LuhringT.M. (2012). Testing the threat-sensitive hypothesis with predator familiarity and dietary specificity. — Ethology 118: 41-48.

FoelixR.F. (1996). Biology of spiders. — Oxford University Press, New York, NY.

FolzH.C.WilderS.M.PersonsM.H.RypstraA.L. (2006). Effects of predation risk on vertical habitat use and foraging of Pardosa milvina. — Ethology 112: 1152-1158.

GirardM.B.KasumovicM.M.EliasD.O. (2011). Multi-modal courtship in the peacock spider, Maratus volans (O.P.-Cambridge, 1874). — PLoS ONE 6: e25390.

GordonS.D.UetzG.W. (2011). Multimodal communication of wolf spiders on different substrates: evidence for behavioural plasticity. — Anim. Behav. 81: 367-375.

HebetsE.A.PapajD.R. (2005). Complex signal function: developing a framework of testable hypotheses. — Behav. Ecol. Sociobiol. 57: 197-214.

HelfmanG.S. (1989). Threat-sensitive predator avoidance in damselfish–trumpetfish interactions. — Behav. Ecol. Sociobiol. 24: 47-58.

HettenaA.M.MunozN.BlumsteinD.T. (2014). Prey responses to a predator’s sounds: a review and empirical study. — Ethology 120: 1-26.

HillP.S.M. (2009). How do animals use substrate-borne vibrations as an information source?Naturwissenschaften 96: 1355-1371.

HoeflerC.D.TaylorM.JakobE.M. (2002). Chemosensory response to prey in Phidippus audax (Araneae, Salticidae) and Pardosa milvina (Araneae, Lycosidae). — J. Arachnol. 30: 155-158.

KatsL.B.DillL.M. (1998). The scent of death: chemosensory assessment of predation risk by prey animals. — Ecoscience 5: 361-394.

LehmannL.M.WalkerS.E.PersonsM.H. (2004). The influence of predator sex on chemically mediated antipredator response in the wolf spider Pardosa milvina (Araneae: Lycosidae). — Ethology 110: 323-339.

LimaS.L.DillL.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640.

LizotteR.S.RovnerJ.S. (1988). Nocturnal capture of fireflies by lycosids spiders: visual versus vibratory stimuli. — Anim. Behav. 36: 1809-1815.

LohreyA.K.ClarkD.L.GordonS.L.UetzG.W. (2009). Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. — Anim. Behav. 77: 813-821.

MarshallS.D.RypstraA.L. (1999). Patterns in the distribution of two wolf spiders (Araneae: Lycosidae) in two soybean agroecosystems. — Environ. Entomol. 38: 1052-1059.

McGregorP.K. (2000). Playback experiments: design and analysis. — Acta Ethol. 3: 3-8.

McNabbD.M.HalajJ.WiseD.H. (2001). Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. — Pedobiologia 45: 289-297.

PartanS.R.MarlerP. (2005). Issues in the classification of multimodal communication signals. — Am. Nat. 2: 231-245.

PersonsM.H.RypstraA.L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). — Ethology 106: 27-35.

PersonsM.H.RypstraA.L. (2001). Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. — J. Chem. Ecol. 27: 2493-2504.

PersonsM.H.UetzG.W. (1998). Presampling sensory information and prey density assessment by wolf spiders (Araneae, Lycosidae). — Behav. Ecol. 9: 360-366.

PersonsM.H.WalkerS.E.RypstraA.L. (2002). Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). — Behav. Ecol. 13: 386-392.

PersonsM.H.WalkerS.E.RypstraA.L.MarshallS.D. (2001). Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). — Anim. Behav. 61: 43-51.

PruittJ.N.StachowiczJ.J.SihA. (2012). Behavioral types of predator and prey jointly determine prey survival: potential implications for the maintenance of within-species behavioral variation. — Am. Nat. 179: 217-227.

RypstraA.L.SchmidtJ.M.ReifB.D.DeVitoJ.PersonsM.H. (2007). Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. — Oikos 116: 853-863.

RypstraA.L.SchlosserA.M.SuttonP.L.PersonsM.H. (2009). Multimodal signalling: the relative importance of chemical and visual cues from females to the behaviour of male wolf spiders. — Anim. Behav. 77: 937-947.

SchonewolfK.W.BellR.RypstraA.L.PersonsM.H. (2006). Field evidence of an airborne enemy-avoidance kairomone in wolf spiders. — J. Chem. Ecol. 32: 1565-1576.

SihA. (2013). Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. — Anim. Behav. 85: 1077-1088.

SitvarinM.I.RypstraA.L. (2012). Sex-specific response of Pardosa milvina (Araneae: Lycosidae) to experience with a chemotactile predation cue. — Ethology 118: 1230-1239.

SitvarinM.I.RypstraA.L. (2014). The importance of intraguild in predicting emergent multiple predator effects. — Ecology 95: 2936-2945.

TaylorA.R.PersonsM.H.RypstraA.L. (2005). The effect of perceived predation risk on male courtship and copulatory behavior in the wolf spider Pardosa milvina (Araneae, Lycosidae). — J. Arachnol. 33: 76-81.

UetzG.W.RobertsJ.A. (2002). Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. — Brain Behav. Evol. 59: 222-230.

UetzG.W.RobertsJ.A.TaylorP.W. (2009). Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. — Anim. Behav. 78: 299-305.

UetzG.W.RobertsJ.A.ClarkD.L.GibsonJ.S.GordonS.D. (2013). Multimodal signals increase active space of communication by wolf spiders in a complex litter environment. — Behav. Ecol. Sociobiol. 67: 1471-1482.

Virant-DoberletM.KingR.A.PolajnarJ.SymondsonW.O.C. (2011). Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. — Mol. Ecol. 20: 2204-2216.

WarkentinK.M. (2005). How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. — Anim. Behav. 70: 59-71.

WuC.-H.EliasD.O. (2014). Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. — Anim. Behav. 90: 47-56.


  • Box plots of principal components describing Pardosa activity in response to vibratory cues from different sources. PC1 (A) distinguished activity from inactivity, whereas PC2 (B) primarily reflected increased time spent immobile and decreased time spent in non-forward movement. Box plots show median, first and third quartiles, greatest values within 1.5 interquartile range and outliers (circles). Different letters indicate significant differences following Tukey HSD tests.

    View in gallery
  • Oscillogram and spectrogram of vibrations played back to Pardosa during filming. Vibrations are from (A) cricket, (B) Pardosa, (C) silence, (D) Tigrosa, (E) Tigrosa on chemotactile cues from Pardosa, (F) Scarites and (G) Scarites on chemotactile cues from Pardosa.

    View in gallery
  • Box plots of vibration intensity (root mean square) for each treatment used in playback. Box plots show median, first and third quartiles, greatest values within 1.5 interquartile range and outliers. Different letters indicate significant differences following Tukey HSD tests.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 4
Full Text Views 4 4 4
PDF Downloads 0 0 0
EPUB Downloads 0 0 0