Friend or foe? Social system influences the allocation of signals across functional categories in the repertoires of the New World jays

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Many factors could influence repertoire size and function. Here, we provide a review of the descriptions of vocal repertoires of New World jays and a unifying terminology for function of their vocalizations. We summarized 19 different functional types of vocal behaviour shared by at least two species, for review purposes. Comparing the 14 studied species, we also classified vocalizations into four major classes defined a priori: ‘Social Integration’, ‘Conflict Resolution’, ‘Predator-related’, and ‘Breeding’. Cooperative breeding, as well as group size, are related not only to repertoire size, but to how species allocate their vocalizations into functional classes. We discuss the tendencies of Conflict Resolution and Social Integration and the possibility of the existence and implications of a trade-off between those functional classes. We identified gaps in the current knowledge on vocalizations of the studied species, and emphasize the importance of empiric evidence of vocalization function in the New World jays.

Friend or foe? Social system influences the allocation of signals across functional categories in the repertoires of the New World jays

in Behaviour

Sections

References

AlgerS.J.RitersL.V. (2006). Lesions to the medial preoptic nucleus differentially affect singing and nest box-directed behaviors within and outside of the breeding season in European starlings (Sturnus vulgaris). — Behav. Neurosci. 120: 1326-1336.

AlvarezH. (1975). The social system of the green jay in Colombia. — Living Bird 14: 5-44.

AmaralM.F.MacedoR.H.F. (2003). Breeding patterns and habitat use in the endemic curl-crested jay of central Brazil. — J. Field Ornithol. 74: 331-340.

American Ornithologists’ Union (1998). Check-list of North American birds7th edn.American Ornithologists’ UnionWashington, DC.

AnjosL. (1991). O ciclo anual de Cyanocorax caeruleus em floresta de araucária (Passeriformes: Corvidae). — Ararajuba 2: 19-23.

AnjosL.VielliardJ.M.E. (1993). Repertoire of the acoustic communication of the azure jay Cyanocorax caeruleus (Vieillot) (Aves, Corvidae). — Rev. Bras. Zool. 10: 657-664.

AnjosL.DebusS.MadgeS.MarzluffJ. (2009). Family Corvidae. — In: Handbook of the birds of the worldVol. 14. Bush-shrikes to Old World sparrows ( del HoyoJ.ElliottA.SargatalJ. eds). Lynx EdicionsBarcelona, Spain p.  566-640.

BarbourD.B. (1977). Vocal communication in the Florida scrub jay. — M.A. thesis University of South Florida Tampa FL.

BardwellE.BenkmanC.W.GouldW.R. (2001). Adaptive geographic variation in western scrub jays. — Ecology 82: 2617-2627.

BeauchampG.Fernández-JuricicE. (2004). Is there a relationship between forebrain size and group size in birds?Evol. Ecol. Res. 6: 833-842.

BednekoffP.A.WoolfendenG.E. (2003). Florida scrub-jays (Aphelocoma coerulescens) are sentinels more when well-fed (even with no kin nearby). — Ethology 109: 895-903.

BergE. (2005). Parentage and reproductive success in the white-throated magpie-jay Calocitta formosa, a cooperative breeder with female helpers. — Anim. Behav. 70: 375-385.

BergerL.R.LigonJ.D. (1977). Vocal communication and individual recognition in the pinyon jay, Gymnorhinus cyanocephalus. — Anim. Behav. 25: 567-584.

BlumsteinD.T.ArmitageK.B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. — Am. Nat. 150: 179-200.

BolkerB.M.BrooksM.E.ClarkC.J.GeangeS.W.PoulsenJ.R.StevensM.H.H.WhiteJ.S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. — Trends Ecol. Evol. 24: 127-135.

BonaccorsoE.PetersonA.T. (2007). A multilocus phylogeny of New World jay genera. — Mol. Phylogenet. Evol. 42: 467-476.

BonaccorsoE. (2009). Historical biogeography and speciation in the Neotropical highlands: molecular phylogenetics of the jay genus Cyanolyca. — Mol. Phylogenet. Evol. 50: 618-632.

BonaccorsoE.PetersonA.T.Navarro-SigüenzaA.G.FleischerR.C. (2010). Molecular systematics and evolution of the Cyanocorax jays. — Mol. Phylogenet. Evol. 54: 897-909.

BradburyJ.W.VehrencampS.L. (1998). Principles of animal communication. — Sinauer AssociatesSunderland, MA.

BreiningerD. (1999). Florida scrub-jay demography and dispersal in a fragmented landscape. — Auk 116: 520-527.

BreiningerD.CarterG. (2003). Territory quality transitions and source-sink dynamics in a Florida scrub-jay population. — Ecol. Appl. 13: 516-529.

BreiningerD.R.TolandB.OddyD.M.LegareM.L. (2006). Land cover characterizations and Florida scrub-jay (Aphelocoma coerulescens) population dynamics. — Biol. Conserv. 128: 169-181.

BrownJ.L. (1963). Aggressiveness, dominance and social organization in the Steller jay. — Condor 65: 460-484.

BrownJ.L. (1964). The evolution of diversity in avian territorial systems. — Wilson Bull. 76: 160-169.

BrownJ.L. (1974). Alternate routes to sociality in jays — with a theory for the evolution of altruism and communal breeding. — Am. Zool. 14: 63-80.

BrownJ.L.BrownE.R.SedranskJ. (1997). Dominance, age, and reproductive success in a complex society: a long-term study of the Mexican jay. — Auk 114: 279-286.

BrunettaB.AnjosL. (2010). Variations in the spatial distribution and the social call of push-crested jay (Cyanocorax chrysops) in the Atlantic forest, southern Brazil. — Ornitol. Neotrop. 21: 203-213.

CardosoG.C.PriceT.D. (2010). Community convergence in bird song. — Evol. Ecol. 24: 447-461.

CassiniM.H. (2013). Chapter 4: distribution of societies. — In: Distribution ecology ( CassiniM.H. ed.). SpringerNew York, NY p.  57-75.

CiceroC.JohnsonN.K. (2001). Higher-level phylogeny of New World vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. — Mol. Phylogenet. Evol. 20: 27-40.

CockburnA. (2004). Mating systems and sexual conflict. — In: Ecology and evolution of cooperative breeding in birds ( KoenigW.DickinsonJ. eds). Cambridge University PressNYChapter 5.

CohenS.M. (1977). Blue jay vocal behavior. — PhD thesis University of Michigan Ann Arbor MI.

Cohn-HaftM.Santos JuniorM.A.FernandesA.M.RibasC.C. (2013). A new species of Cyanocorax jay from savannas of the central Amazon. — In: Handbook of the birds of the world. New species ( del HoyoJ.ElliottA.SargatalJ.ChristieD.A. eds). Lynx EdicionsBarcelona p.  306-310.

ConantS. (1972). Visual and acoustic communication in the blue jay Cyanocitta cristata (Aves Corvidae). — PhD thesis The University of Oklahoma Norman OK.

CrossinR.S. (1965). The breeding biology of the tufted jay. — MS thesis The University of Arizona Tempe AZ.

CurryR.L.PetersonA.T.LangenT.A. (2002). Western scrub-jay (Aphelocoma californica). — In: The birds of North America online ( PooleA. ed.). Cornell Lab of OrnithologyIthaca, NY. Available online at http://bna.birds.cornell.edu/bna/species/712.

DarwinC. (1872). The expression of the emotions in man and animals. — Reprinted by University of Chicago PressLondon.

de los MonterosA.CracraftJ. (1997). Intergeneric relationships of the New World jays inferred from cytochrome b gene sequences. — Condor 99: 490-502.

DevoogdT.J.KrebsJ.R.HealyS.D.PurvisA. (1993). Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. — Proc. Roy. Soc. Lond. B: Biol. Sci. 254: 75-82.

DunbarR.I.M. (1995). Neocortex size and group size in primates: a test of the hypothesis. — J. Hum. Evol. 28: 287-296.

EkmanJ.EricsonP.G. (2006). Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. — Proc. Roy. Soc. Lond. B: Biol. Sci. 273: 1117-1125.

EllisJ.M.S. (2008a). Which call parameters signal threat to conspecifics in white-throated magpie-jay mobbing calls?Ethology 114: 154-163.

EllisJ.M.S. (2008b). The vocal repertoire of the white-throated magpie-jay (Calocitta formosa). — PhD thesis Cornell University Ithaca NY.

EllisJ.M.S. (2009). Anti-predator signals as advertisements: evidence in white-throated magpie-jays. — Ethology 115: 522-532.

EllisJ.M.S.LangenT.A.BergE.C. (2009). Signaling for food and sex? Begging by reproductive female white-throated magpie-jays. — Anim. Behav. 78: 615-623.

ElowsonA.M.HailmanJ.P. (1991). Analysis of complex variation: dichotomous sorting of predator-elicited calls of the Florida scrub jay. — Bioacoustics 3: 295-320.

EricsonP.G.P.JansénA.-L.JohanssonU.S.EkmanJ. (2005). Inter-generic relationships of the crows, jays, magpies and allied groups (Aves: Corvidae) based on nucleotide sequence data. — J. Avian. Biol. 36: 222-234.

EvansC.S.EvansL. (1999). Chicken food calls are functionally referential. — Anim. Behav. 58: 307-319.

FelsensteinJ. (1985). Phylogenies and the comparative method. — Am. Nat. 125: 1-15.

FreebergT.M. (2006). Social complexity can drive vocal complexity: group size influences vocal information in Carolina chickadees. — Psychol. Sci. 17: 557-561.

FreebergT.M.DunbarR.I.M.OrdT.J. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 367: 1785-1801.

FritzJ.KotrschalK. (1999). Social learning in common ravens, Corvus corax. — Anim. Behav. 57: 785-793.

GaramszegiL.Z. (2004). Sexually size dimorphic brains and song complexity in passerine birds. — Behav. Ecol. 16: 335-345.

GayouD.C. (1995). Green jay (Cyanocorax yncas). — In: The birds of North America online ( PooleA. ed.). Cornell Lab of OrnithologyIthaca, NY. Available online at http://bna.birds.cornell.edu/bna/species/187.

GoodsonJ.L. (1998). Territorial aggression and dawn song are modulated by septal vasotocin and vasoactive intestinal polypeptide in male field sparrows (Spizella pusilla). — Horm. Behav. 34: 67-77.

GoodsonJ.L.EibachR.SakataJ.Adkins-ReganE. (1999). Effect of septal lesions on male song and aggression in the colonial zebra finch (Taeniopygia guttata) and the territorial field sparrow (Spizella pusilla). — Behav. Brain. Res. 98: 167-180.

GoodsonJ.L.KabelikD.KellyA.M.RinaldiJ.KlattJ.D. (2009). Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship. — Proc. Natl. Acad. Sci. USA 106: 8737-8742.

GoodwinD. (1986). Crows of the world2nd edn.University of Washington PressSeattle, WA.

GowerJ.C. (1971). A general coefficient of similarity and some of its properties. — Biometrics 27: 857.

GustisonM.L.le RouxA.BergmanT.J. (2012). Derived vocalizations of geladas (Theropithecus gelada) and the evolution of vocal complexity in primates. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 367: 1847-1859.

GwinnerE. (1964). Untersuchungen über das Ausdrucks- und Sozialverhalten des Kolkraben (Corvus corax corax L.). — Z. Tierpsychol. 21: 657-748.

GwinnerE.KneutgenJ. (1962). Über die biologische Bedeutung der ‘zweckdienlichen’ Anwendung erlernter Laute bei Vögeln. — Z. Tierpsychol. 19: 692-696.

HailmanJ.P. (1990). Blue jay mimics osprey. — Florida Field Nat. 18: 81-82.

HailmanJ.P.FickenM.S. (1996). Comparative analysis of vocal repertoires, with reference to chickadees. — In: Ecology and evolution of acoustic communication in birds ( KroodsmaD.E.MillerE.H. eds). Cornell University PressIthaca, NY.

HardyJ.W. (1961). Studies in behaviour and phylogeny of certain New World jays (Garrulinae). — Univ. Kansas Sci. Bull. 62: 13-149.

HardyJ.W. (1969). A taxonomic revision of the New World jays. — Condor 71: 360-375.

HardyJ.W. (1979). Vocal repertoire and its possible evolution in the black and blue jays (Cissilopha). — Wilson Bull. 91: 187-201.

HeinrichB. (1989). Ravens in winter. — Simon and SchusterNew York, NY.

HeinsohnR.G.LeggeS. (1999). The cost of helping. — Trends Ecol. Evol. 14: 53-57.

HopeS. (1980). Call form in relation to function in the Steller’s jay. — Am. Nat. 116: 788-820.

InnesK.E.JohnstonR.E. (1996). Cooperative breeding in the white-throated magpie-jay. How do auxiliaries influence nesting success?Anim. Behav. 51: 519-533.

IwaniukA.N.ArnoldK.E. (2004). Is cooperative breeding associated with bigger brains? A comparative test in the Corvida (Passeriformes). — Ethology 110: 203-220.

JohnsonK.P. (2000). The evolution of courtship display repertoire size in the dabbling ducks (Anatini). — J. Evol. Biol. 13: 634-644.

KershenbaumA.FreebergT.M.GammonD.E. (2015). Estimating vocal repertoire size is like collecting coupons: a theoretical framework with heterogeneity in signal abundance. — J. Theor. Biol. 373: 1-11.

KoenigW.DickinsonJ. (2004). Ecology and evolution of cooperative breeding in birds. — Cambridge University PressNew York, USA.

KrakauerD.C. (1995). Groups confuse predators by exploiting perceptual bottlenecks: a connectionist model of the confusion effect. — Behav. Ecol. Sociobiol. 36: 421-429.

LacherT.E.CassiniM.H. (2001). Cavies. — In: New encyclopaedia of mammals ( MacDonaldD.W. ed.). Oxford University PressOxford p.  672-675.

LamarckJ.B. (1809/1963). Philosophie zoologique (zoological philosophie). — Hafner PublishingNew York, NY.

LangenT.A. (1996a). The mating system of the white-throated magpie-jay Calocitta formosa and Greenwood’s hypothesis for sex-biased dispersal. — Ibis 138: 506-513.

LangenT.A. (1996b). Skill acquisition and the timing of natal dispersal in the white throated magpie-jay, Calocitta formosa. — Anim. Behav. 51: 575-588.

LangenT.A.VehrencampS.L. (1998). Ecological factors affecting group and territory size in white-throated magpie-jays. — Auk 115: 327-339.

LangenT.A.VehrencampS.L. (1999). How white-throated magpie-jay helpers contribute during breeding. — Auk 116: 131-140.

LaurenE.W.GreeneE.DavisonW.MuehterV.R. (2014). Steller’s jay (Cyanocitta stelleri). — In: The birds of North America online ( PooleA. ed.). Cornell Lab of OrnithologyIthaca, NY. Available online at http://bna.birds.cornell.edu/bna/species/343.

LewisP.A.RezaieR.BrowneR.RobertsN.DunbarR.I.M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. — NeuroImage 57: 1624-1629.

LigonJ.D.BurtD.B. (2004). Chapter 1: evolutionary origins. — In: Ecology and evolution of cooperative breeding in birds ( KoenigW.DickinsonJ. eds). Cambridge University PressNew York, NY.

LorenzK. (1931). Beiträge zur Ethologie sozialer Corviden. — J. Ornithol. 79: 67-127.

LowenC.DunbarR.I.M. (1994). Territory size and defendability in primates. — Behav. Ecol. Sociobiol. 35: 347-354.

MacedoniaJ.M.EvansC.S. (1993). Essay on contemporary issues in ethology: variation among mammalian alarm call systems and the problem of meaning in animal signals. — Ethology 93: 177-197.

MadgeS.BurnH. (1994). Crows and jays: a guide to the crows jays and magpies of the world. — Houghton MifflinNew York, USA.

MarlerP.EvansC.S.HauserM.D. (1992). Animal signals: motivational, referential, or both? — In: Nonverbal vocal communication: comparative and developmental approaches ( PapousakH.JürgensU.PapousakM. eds). Cambridge University PressNew York, USA p.  66-86.

MarzluffJ.M.BaldaR.P. (1992). The Pinyon jay: behavioral ecology of a colonial and cooperative corvid. — Academic PressSan Diego, California.

McCombK.SempleS. (2005). Coevolution of vocal communication and sociality in primates. — Biol. Lett. 1: 381-385.

McCormackJ.E.HeledJ.DelaneyK.S.PetersonA.T.KnowlesL.L. (2011). Calibrating divergence times on species tree versus gene trees: implications for speciation history of Aphelocoma jays. — Evolution 65: 184-202.

OberskiI.M.WilsonJ.D. (1991). Territoriality and site-related dominance: on two related concepts in avian social organization. — Ethology 87: 225-236.

OksanenJ.BlanchetF.G.KindtR.LegendreP.MinchinP.R.O’HaraR.B.SimpsonG.L.SolymosP.StevensM.H.H.WagnerH. (2015). vegan: community ecology package. — R package version 2.2-1.

OrdT.J.BlumsteinD.T. (2002). Size constraints and the evolution of display complexity: why do large lizards have simple displays?Biol. J. Linn. Soc. 76: 145-161.

OrdT.J.BlumsteinD.T.EvansC.S. (2002). Ecology and signal evolution in lizards. — Biol. J. Linn. Soc. 77: 127-148.

PodaniJ.SchmeraD. (2006). On dendrogram-based measures of functional diversity. — Oikos 115: 179-185.

PodaniJ.SchmeraD. (2007). How should a dendrogram based measure of functional diversity function? A rejoinder to Petchey and Gaston. — Oikos 116: 1427-1430.

PodaniJ. (1999). Extending Gower’s general coefficient of similarity to ordinal characters. — Taxon 48: 331-340.

PollardK.A.BlumsteinD.T. (2012). Evolving communicative complexity: insights from rodents and beyond. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 367: 1869-1878.

PooleA.GillF. (2005). The birds of North America. — The Academy of Natural SciencesPhiladelphia, PA and The American Ornithologists’ UnionWashington, DC.

PosadaD. (2008). jModelTest: phylogenetic model averaging. — Mol. Biol. Evol. 25: 1253-1256.

PowellJ.LewisP.A.DunbarR.I.M.García-FiñanaM.RobertsN. (2010). Orbital prefrontal cortex volume correlates with social cognitive competence. — Neuropsychologia 48: 3554-3562.

PriceT.D.HooperD.BuchananC.JohanssonU.TietzeD.AlströmP.OlssonU.GhoshM.IshtiaqF.GuptaS.K.MartensJ.HarrB.SinghP.MohanD. (2014). Niche filling slows the diversification of Himalayan songbirds. — Nature 509: 222-225.

R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna.

RacineR.N.ThompsonN.S. (1983). Social organization of wintering blue jays. — Behaviour 87: 237-255.

RaittR.J.HardyJ.W. (1976). Behavioral ecology of the Yucatan jay. — Wilson Bull. 88: 529-554.

RaittR.J.HardyJ.W. (1979). Social behavior, habitat, and food of the beechey jay. — Wilson Bull. 91: 1-15.

ReichardD.G.WelklinJ.F. (2015). On the existence and potential functions of low-amplitude vocalizations in North American birds. — Auk 132: 156-166.

RevellL.J. (2009). Size-correction and principal components for interspecific comparative studies. — Evol. 63: 3258-3268.

RevellL.J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). — Methods Ecol. Evol. 3: 217-223.

RiceN.H.Martínez-MeyerE.PetersonA.T. (2003). Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. — Biol. J. Linn. Soc. 80: 369-383.

RitersL.V.BallG.F. (1999). Lesions to the medial preoptic area affect singing in the male European starling (Sturnus vulgaris). — Horm. Behav. 36: 276-286.

SeddonN. (2005). Ecological adaptation and species recognition drives vocal evolution in Neotropical suboscine birds. — Evolution 59: 200-215.

ShultzS.DunbarR.I.M. (2007). The evolution of the social brain: anthropoid primates contrast with other vertebrates. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 2429-2436.

SlagerD.L.BatteyC.J.BrysonR.W.Jr.VoelkerG.KlickaJ. (2014). A multilocus phylogeny of a major New World avian radiation: the Vireonidae. — Mol. Phylogenet. Evol. 80: 95-104.

SmithK.G.TarvinK.A.WoolfendenG.E. (2013). Blue jay (Cyanocitta cristata). — In: The birds of North America online ( PooleA. ed.). Cornell Lab of OrnithologyIthaca, NY. Available online at http://bna.birds.cornell.edu/bna/species/469.

TobiasJ.A.AbenJ.BrumfieldR.T.DerryberryE.P.HalfwerkW.SlabbekoornH.SeddonN. (2010). Song divergence by sensory drive in Amazonian birds. — Evolution 64: 2820-2839.

TownsendA.K.BowmanR.FitzpatrickJ.W.DentM.LovetteI.J. (2011). Genetic monogamy across variable demographic landscapes in cooperatively breeding Florida scrub-jays. — Behav. Ecol. 22: 464-470.

UejimaA.BoesingA.L.AnjosL. (2012). Breeding and foraging variation of the plush-crested jay (Cyanocorax chrysops) in the Brazilian Atlantic forest. — Wilson J. Ornithol. 124: 87-95.

UejimaA.M.K. (1998). Ecologia da gralha-picaça Cyanocorax chrysops (Viellot 1818) (Passeriformes: Corvidae) em três áreas ao longo da bacia do Rio Tibagi Estado do Paraná Brasil. — Doctoral thesis Universidade Federal do Paraná Curitiba Brazil.

VenablesW.N.RipleyB.D. (2002). Modern applied statistics with S4th edn.SpringerNew York, NY.

WadewitzP.HammerschmidtK.BattagliaD.WittA.WolfF.FischerJ. (2015). Characterizing vocal repertoires — hard vs. soft classification approaches. — PLoS Biol. 10: e0125785.

WebberT. (1984). Form and function of the long-range calls of scrub jays Aphelocoma coerulescens obscura. — PhD thesis University of Florida Gainesville FL.

WilliamsD.A.HaleA.M. (2006). Helper effects on offspring production in cooperatively breeding brown jays (Cyanocorax morio). — Auk 123: 847-857.

WoolfendenG.E. (1978). Growth and survival of young Florida scrub jays. — Wilson Bull. 90: 1-18.

WoolfendenG.E.FitzpatrickJ.W. (1978). The inheritance of territory in group-breeding birds. — BioScience 28: 104-108.

WoolfendenG.E.FitzpatrickJ.W. (1984). The Florida scrub jay: demography of a cooperative-breeding bird. — Princeton University PressPrinceton, NJ.

WoolfendenG.E.FitzpatrickJ.W. (1990). Florida scrub jays. A synopsis after 18 years of study. — In: Cooperative breeding in birds. Long-term studies of ecology and behavior ( StaceyP.B.KoenigW.D. eds). Cambridge University PressCambridge p.  239-266.

WoolfendenG.E.FitzpatrickJ.W. (1996). Florida scrub-jay (Aphelocoma coerulescens). — In: The birds of North America online ( PooleA. ed.). Cornell Lab of OrnithologyIthaca, NY. Available online at http://bna.birds.cornell.edu/bna/species/228.

ZuberbühlerK. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. — Behav. Ecol. Sociobiol. 50: 414-422.

ZwicklD.J. (2006). Garli — genetic algorithm for rapid likelihood inference. — Available online at http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.

Bioacoustics Research Program (2014). Raven pro: interactive sound analysis software version 1.5. — The Cornell Lab of Ornithology Ithaca NY.

Figures

  • View in gallery

    Ordination of the two principal coordinates resulting from the Phylogenetic Principal Component Analysis, under (A) Brownian Motion and (B) Pagel’s λ size-corrections, explaining, respectively, 80.61 and 82.43% of the variance between species according to vocalization subtotals among functional classes of vocal behaviour.

  • View in gallery

    Phylogeny of the New World jays based on sequences the mitochondrial genes NADH dehydrogenase subunit 2 (ND2; 1002 bp). (A) Sampling 40 species, and Pica pica as outgroup. Nodal support was assessed with 100 bootstrap replicates. A second tree (B) was generated by removal of species (without alter the relative branch lengths) which were not included in this study, providing the phylogenetic basis for comparison in further quantitative analysis.

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Webber (1984; complemented by Curry et al., 2013) in the vocal repertoire of Aphelocoma californica. Sample identification: ML120228 (“weep”); ML56899 (“screlch”); ML120228 (“schlenk”); ML120228 (“zeep”); ML199099 (“zraanh”); ML118868 (“wheeze”); ML74285 (scold); ML74285 (“kuk”); ML74285 (“chuk”); ML121986 (beg).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Berger & Ligon (1977; complemented by Balda & Russel, 2002, and Marzluff & Balda, 2010) in the vocal repertoire of Gymnorhinus cyanocephalus. Sample identification: XC153392 (“rack”); ML44979 (multiple “rack”); XC153392 (“racka”); ML21254 (falling “rack”); ML21254 (“near”); ML47589 (“kaw”); ML119406 (“buzz”); ML44632 (“pipping” rattle); XC19081 (rattle).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Hope (1980; complemented by Walker, 2014) in the vocal repertoire of Cyanocitta stelleri. The last section is in a different scale and resolution (window size = 1024) to show a sample of song sequence. Sample identification: XC30604 (“wek”); ML13466 (“ut”, “aap”, “wah”); ML59837 (growl); ML125473 (rattle); ML56825 (“tear”); ML59839 (“ow”); ML18791 (“creak”); XC125473 (guttural notes); ML105314 (song).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Conant (1972; complemented by Smith et al., 2013) in the vocal repertoire of Cyanocitta cristata. The last section is in a different scale and resolution (window size = 1024) to show a sample of song sequence. Sample identification: ML22473 (distress call); ML94218 (alarm call); XC33617 (flock contact call); ML138377 (bell song); ML93770 (“wheedle” bell); ML94220 (rolling click); ML13436 (“peep” calls); ML49621 (soft “keu”); ML94219 (song).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Anjos & Vielliard (1993) in the vocal repertoire of Cyanocorax caeruleus. The last section is in a different scale and resolution (window size = 1024) to show a sample of song sequence. Sample identification: LDA39-17 (contact call); LDA39-25 (flight call); ML90137, LDA12-4 (social call); LDA23-5 (social alarm call); FM13373 (proximity call, alert call, pair call; hunger/fear call, imitative call, a & b calls); FM13375 (threat call); LDA39-17 (social identity call); LDA15-2 (song).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Uejima (1998; complemented by Brunetta & Anjos, 2010) in the vocal repertoire of Cyanocorax chrysops. Sample identification: GR20150612_0713 (A1, A6, A7, C3, R4, R9); GR 20151129_0929 (A3), GR 20150529_0845 (A5); XC32406 (C1); GR326 (C2, C4); GR20140802_1140 (R1); GR20140820 (R2); GR20140819-3 (R3); ML63635 (R5); ML88705 (R8); GR20150924_0707 (R10); GR20151119_0929 (R12).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Crossin (1965) in the vocal repertoire of Cyanocorax dickeyi. Sample identification: FM346 (“rak”, repeated “hoot”); ML136517 (“aagh”); XC265118 (begging call); FM406 (“ped-el” or “pid-it” call); ML55441 (ricochet).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Hardy (1979) in the vocal repertoire of Cyanocorax beecheii. Sample identification: XC 222019 (“caw”); FM3169 (“clok-clok-clok”); FM2434 (quavering “caw”); FM698 (two-note “peep!”, plaintive call).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Hardy (1979) in the vocal repertoire of Cyanocorax melanocyaneus. Sample identification: ML13072 (“caw”); ML13075 (begging “caw”); FM579 (“chank chank”).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Hardy (1979) in the vocal repertoire of Cyanocorax sanblasianus. Sample identification: ML13082 (chatter “caw”); FM247 (sustained “caw”); FM10369 (“chank chank”); FM1273 (fear call); FM1926 (“clank!-clank!”).

  • View in gallery

    Spectrograms (24-bit; 44.1 kHz; window size = 512; overlap = 90%), of vocalizations described by Hardy (1979) in the vocal repertoire of Cyanocorax yucatanicus. Sample identification: ML103300 (chatter); ML13077 (rattle); FM19697 (begging “cah”); FM482 (“chook chook”); ML103298 (pump handle); FM466 (foggy bell); FM466 (guttural and clear tin-horn “pipping”); ML13088 (clank); FM85 (“peep”); ML13077 (“peer”); FM33 (“wooh”).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 22 22 10
Full Text Views 82 82 70
PDF Downloads 8 8 5
EPUB Downloads 0 0 0