The role of male coloration in the outcome of staged contests in the European common wall lizard (Podarcis muralis)

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Colour signals play a key role in regulating the intensity and outcome of animal contests. Males of the common wall lizard (Podarcis muralis) show conspicuous ventrolateral ultraviolet (UV)-blue and black patches. In addition, some populations express a striking ventral colour polymorphism (i.e., discrete orange, white and yellow morphs). In this study, we set out to evaluate the potential signalling function of these colour patches by staging pairwise combats between 60 size-matched adult lizards (20 per morph). Combats were held in a neutral arena, with each lizard facing rivals from the three morphs in a tournament with a balanced design. We then calculated a fighting ability ranking using the Bradley–Terry model, and used it to explore whether ventral colour morph, the size of UV-blue and black patches or the spectral characteristics of UV-blue patches (i.e., brightness, hue, chroma) are good predictors of fighting ability. We did not find an effect of the UV-blue patches on contest outcome, but the size of black patches emerged as a good predictor of fighting ability. We also found that winners were more aggressive when facing rivals with black patches of similar size, suggesting that black patches play a role in rival assessment and fighting rules. Finally, we found that orange males lost fights against heteromorphic males more often than yellow or white males. In light of these results, we discuss the potential signalling function of ventrolateral and ventral colour patches in mediating agonistic encounters in this species.

The role of male coloration in the outcome of staged contests in the European common wall lizard (Podarcis muralis)

in Behaviour

Sections

References

AdkinsE.DriggersT.FergusonG.GehrmannW.GyimesiZ.MayE.OgleM.OwensT. (2003). Ultraviolet light and reptiles, amphibians. — J. Herpetol. Med. Surg. 13: 27-37.

BadyaevA.V.YoungR.L. (2004). Complexity and integration in sexual ornamentation: an example with carotenoid and melanin plumage pigmentation. — J. Evol. Biol. 17: 1317-1327.

BairdT.A. (2013). Lizards and other reptiles as model systems for the study of contest behaviour. — In: Animal contests ( HardyC.W.BriffaM. eds). Cambridge University PressCambridge p.  258-286.

BajerK.MolnárO.TörökJ.HerczegG. (2011). Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). — Biol. Lett. 7: 866-868.

BowkerR.G.SpindlerH.S.TildenA.BairosV.A.MurrayR. (1987). Reflections on lizard skin: the ultrastructure of the scales of Podarcis bocagei. — In: Proceedings of the fourth ordinary general meeting of the Societas Europaea Herpetologica ( van GelderJ.J.StrijboschH.BergersP.J.M. eds). Societas Europaea HerpetologicaNijmegen p.  83-86.

BradburyJ.W.VehrencampS.L. (2011). Principles of animal communication. — SinauerSan Diego, CA.

BradleyR.A.TerryM.E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. — Biometrika 39: 324-345.

BriffaM. (2014). Agonistic signals: integrating analysis of functions and mechanisms. — In: Animal signaling and function: an integrative approach ( IrschickD.J.BriffaM.PodosJ. eds). WileyHoboken, NJ p.  141-173.

CalsbeekB.HasselquistD.ClobertJ. (2010). Multivariate phenotypes and the potential for alternative phenotypic optima in wall lizard (Podarcis muralis) ventral colour morphs. — J. Evol. Biol. 23: 1138-1147.

CarazoP.FontE.DesfilisE. (2008). Beyond ‘nasty neighbours’ and ‘dear enemies’? Individual recognition by scent marks in a lizard (Podarcis hispanica). — Anim. Behav. 76: 1953-1963.

CarpenterG.C. (1995). Modeling dominance: the influence of size, coloration, and experience on dominance relations in tree lizards (Urosaurus ornatus). — Herpetol. Monogr. 9: 88-101.

ChaineA.S.TjernellK.A.ShizukaD.LyonB.E. (2011). Sparrows use multiple status signals in winter social flocks. — Anim. Behav. 81: 447-453.

DiepS.K.WestneatD.F. (2013). The integration of function and ontogeny in the evolution of status signals. — Behaviour 150: 1015-1044.

DucrestA.L.KellerL.RoulinA. (2008). Pleiotropy in the melanocortin system, coloration and behavioural syndromes. — Trends Ecol. Evol. 23: 502-510.

EdsmanL. (1990). Territoriality and competition in wall lizards. — PhD thesis University of Stockholm Stockholm.

EdsmanL. (2001). Female mate choice of male characteristics and resources in the wall lizard. — In: Mediterranean basin lizards: a biological approach ( VicenteL.CrespoE.G. eds). Instituto da Conservaçao da NaturezaLisboa p.  133-134.

EndlerJ.A. (1990). On the measurement and classification of colour in studies of animal colour patterns. — Biol. J. Linn. Soc. 41: 315-352.

EnquistM.LeimarO. (1983). Evolution of fighting behaviour: decision rules and assessment of relative strength. — J. Theor. Biol. 102: 387-410.

EvansJ.E.CuthillI.C.BennettA.T. (2006). The effect of flicker from fluorescent lights on mate choice in captive birds. — Anim. Behav. 72: 393-400.

FirthD. (2005). Bradley–Terry models in R. — J. Stat. Softw. 12: 1-12.

FirthD.TurnerH.L. (2012). Bradley–Terry models in R: the BradleyTerry2 package. — J. Stat. Softw. 48: 1-21.

FontE.Pérez i de LanuzaG.SampedroC. (2009). Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata: Lacertidae). — Biol. J. Linn. Soc. 97: 766-780.

FontE.BarbosaD.SampedroC.CarazoP. (2012). Social behavior, chemical communication, and adult neurogenesis: studies of scent mark function in Podarcis wall lizards. — Gen. Comp. Endocrinol. 177: 9-17.

GaleottiP.Pellitteri-RosaD.SacchiR.GentilliA.PupinF.RuboliniD.FasolaM. (2010). Sex-, morph- and size-specific susceptibility to stress measured by haematological variables in captive common wall lizard Podarcis muralis. — Comp. Biochem. Phys. A 157: 354-363.

GaleottiP.SacchiR.Pellitteri-RosaD.BellatiA.CoccaW.GentilliA.ScaliS.FasolaM. (2013). Colour polymorphism and alternative breeding strategies: effects of parent’s colour morph on fitness traits in the common wall lizard. — Evol. Biol. 40: 385-394.

GonzalezG.SorciG.SmithL.C.De LopeF. (2002). Social control and physiological cost of cheating in status signaling male house sparrows (Passer domesticus). — Ethology 108: 289-302.

GosáA. (1987). Observaciones sobre el colorido y diseño en poblaciones ibéricas de lagartija roquera, Podarcis muralis (Laurenti, 1768). — Rev. Esp. Herpetol. 2: 7-27.

GreenA.J. (2001). Mass/length residuals: measures of body condition or generators of spurious results?Ecology 82: 1473-1483.

HamiltonD.G.WhitingM.J.PrykeS.R. (2013). Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards. — Behav. Ecol. 24: 1138-1149.

HealeyM.UllerT.OlssonM. (2007). Seeing red: morph-specific contest success and survival rates in a colour-polymorphic agamid lizard. — Anim. Behav. 74: 337-341.

HillG.E.BrawnerW.R. (1998). Melanin-based plumage coloration in the house finch is unaffected by coccidial infection. — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 1105-1109.

HorthL. (2003). Melanic body colour and aggressive mating behaviour are correlated traits in male mosquitofish (Gambusia holbrooki). — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 1033-1040.

HuygheK.VanhooydonckB.HerrelA.TadićZ.Van DammeR. (2012). Female lizards ignore the sweet scent of success: male characteristics implicated in female mate preference. — Zoology 115: 217-222.

JenssenT.A.OrrellK.S.LovernM.B. (2000). Sexual dimorphisms in aggressive signal structure and use by a polygynous lizard, Anolis carolinensis. — Copeia: 140-149.

JohnsonA.M.FullerR.C. (2014). The meaning of melanin, carotenoid, and pterin pigments in the bluefin killifish, Lucania goodei. — Behav. Ecol. 26: 158-167.

KitzlerG. (1941). Die Paarungsbiologie einiger Eidechsen. — Z. Tierpsychol. 4: 353-402.

LailvauxS.P.IrschickD.J. (2007). The evolution of performance-based male fighting ability in Caribbean Anolis lizards. — Am. Nat. 170: 573-586.

LebasN.R.MarshallN.J. (2001). No evidence of female choice for a condition-dependent trait in the agamid lizard, Ctenophorus ornatus. — Behaviour 138: 965-980.

LessellsC.M.BoagP.T. (1987). Unrepeatable repeatabilities: a common mistake. — Auk 104: 116-121.

MafliA.WakamatsuK.RoulinA. (2011). Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises. — Anim. Behav. 81: 859-863.

MarcoA.Pérez-MelladoV. (1999). Mate guarding, intrasexual competition and mating success in males of the non-territorial lizard Lacerta schreiberi. — Ethol. Ecol. Evol. 11: 279-286.

MarshallK.L.StevensM. (2014). Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. — Behav. Ecol. 25: 1325-1337.

MartinM.Le GalliardJ.F.MeylanS.LoewE.R. (2015a). The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. — J. Exp. Biol. 218: 458-465.

MartinM.MeylanS.PerretS.Le GalliardJ.F. (2015b). UV coloration influences spatial dominance but not agonistic behaviors in male wall lizards. — Behav. Ecol. Sociobiol. 69: 1483-1491.

MasonR.T.ParkerM.R. (2010). Social behavior and pheromonal communication in reptiles. — J. Comp. Physiol. A 196: 729-749.

MiyaiC.A.SanchesF.H.C.CostaT.M.ColpoK.D.VolpatoG.L.BarretoR.E. (2011). The correlation between subordinate fish eye colour and received attacks: a negative social feedback mechanism for the reduction of aggression during the formation of dominance hierarchies. — Zoology 114: 335-339.

Molina-BorjaM.FontE.Mesa ÁvilaG. (2006). Sex and population variation in ultraviolet reflectance of color patches in Gallotia galloti (fam. Lacertidae) from Tenerife (Canary Islands). — J. Zool. 268: 193-206.

MøllerA.P. (1987). Social control of deception among status signalling house sparrows Passer domesticus. — Behav. Ecol. Sociobiol. 20: 307-311.

OlssonM. (1992). Contest success in relation to size and residency in male sand lizards, Lacerta agilis. — Anim. Behav. 44: 386-388.

OlssonM. (1993). Contest success and mate guarding in male sand lizards, Lacerta agilis. — Anim. Behav. 46: 408-409.

OlssonM. (1994). Nuptial coloration in the sand lizard, Lacerta agilis: an intra-sexually selected cue to lighting ability. — Anim. Behav. 48: 607-613.

OlssonM.ShineR. (2000). Ownership influences the outcome of male–male contests in the scincid lizard, Niveoscincus microlepidotus. — Behav. Ecol. 11: 587-590.

OlssonM.AnderssonS.WapstraE. (2011). UV-deprived coloration reduces success in mate acquisition in male sand lizards (Lacerta agilis). — Plos ONE 6: e19360.

OlssonM.Stuart-FoxD.BallenC. (2013). Genetics and evolution of colour patterns in reptiles. — Semin. Cell Dev. Biol. 24: 529-541.

OsborneL. (2005). Information content of male agonistic displays in the territorial tawny dragon (Ctenophorus decresii). — J. Ethol. 23: 189-197.

Pérez i de LanuzaG.FontE. (2014). Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. — J. Exp. Biol. 217: 2899-2909.

Pérez i de LanuzaG.FontE. (2015). Differences in conspicuousness between alternative color morphs in a polychromatic lizard. — Behav. Ecol. 26: 1432-1446.

Pérez i de LanuzaG.FontE.MonterdeJ.L. (2013a). Using visual modelling to study the evolution of lizard coloration: sexual selection drives the evolution of sexual dichromatism in lacertids. — J. Evol. Biol. 26: 1826-1835.

Pérez i de LanuzaG.FontE.CarazoP. (2013b). Color-assortative mating in a color-polymorphic lacertid lizard. — Behav. Ecol. 24: 273-279.

Pérez i de LanuzaG.CarazoP.FontE. (2014). Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. — Anim. Behav. 90: 73-81.

PrykeS.R.GriffithS.C. (2006). Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch. — Proc. Roy. Soc. Lond. B: Biol. Sci. 273: 949-957.

PrykeS.R.LawesM.J.AnderssonS. (2001). Agonistic carotenoid signalling in male red-collared widowbirds: aggression related to the colour signal of both the territory owner and model intruder. — Anim. Behav. 62: 695-704.

QiY.WanH.GuH.WangY. (2011). Do displays and badges function in establishing the social structure of male toad-headed lizards, Phrynocephalus vlangalii?J. Ethol. 29: 381-387.

R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical computingVienna. Available online at http://www.R-project.org/.

RoulinA. (2016). Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. — Biol. Rev. 91: 328-348.

SacchiR.RuboliniD.GentilliA.PupinF.RazzettiE.ScaliS.GaleottiP.FasolaM. (2007a). Morph-specific immunity in male Podarcis muralis. — Amphibia-Reptilia 28: 408-412.

SacchiR.ScaliS.PupinF.GentilliA.GaleottiP.FasolaM. (2007b). Microgeographic variation of colour morph frequency and biometry of common wall lizards. — J. Zool. 273: 389-396.

SacchiR.PupinF.GentilliA.RuboliniD.ScaliS.FasolaM.GaleottiP. (2009). Male–male combats in a polymorphic lizard: residency and size, but not color, affect fighting rules and contest outcome. — Aggr. Behav. 35: 274-283.

SacchiR.GhittiM.ScaliS.MangiacottiM.ZuffiM.A.SannoloM.ColadonatoA.J.PasquesiG.BovoM.Pellitteri-RosaD. (2015). Common wall lizard females (Podarcis muralis) do not actively choose males based on their colour morph. — Ethology 121: 1145-1153.

San-JoseL.M.Peñalver-AlcázarM.MiláB.Gonzalez-JimenaV.FitzeP.S. (2014). Cumulative frequency-dependent selective episodes allow for rapid morph cycles and rock–paper–scissors dynamics in species with overlapping generations. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20140976.

SenarJ.C.CamerinoM. (1998). Status signalling and the ability to recognize dominants: an experiment with siskins (Carduelis spinus). — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 1515-1520.

SimonV.B. (2011). Communication signal rates predict interaction outcome in the brown anole lizard, Anolis sagrei. — Copeia: 38-45.

SinervoB.LivelyC.M. (1996). The rock–paper–scissors game and the evolution of alternative male strategies. — Nature 380: 240-243.

SinervoB.ChaineA.ClobertJ.CalsbeekR.HazardL.LancasterL.McAdamA.G.AlonzoS.CorriganG.HochbergM.E. (2006). Self-recognition, color signals, and cycles of greenbeard mutualism and altruism. — Proc. Natl. Acad. Sci. USA 103: 7372-7377.

StapleyJ.WhitingM.J. (2006). Ultraviolet signals fighting ability in a lizard. — Biol. Lett. 2: 169-172.

StoehrA.M. (2006). Costly melanin ornaments: the importance of taxon?Funct. Ecol. 20: 276-281.

Stuart-FoxD.M.JohnstonG.R. (2005). Experience overrides colour in lizard contests. — Behaviour 142: 329-350.

Stuart-FoxD.M.FirthD.MoussalliA.WhitingM.J. (2006). Multiple signals in chameleon contests: designing and analysing animal contests as a tournament. — Anim. Behav. 71: 1263-1271.

TaborskyM. (2008). Alternative reproduction tactics in fish. — In: Alternative reproductive tactics: an integrative approach ( OliveiraR.F.TaborskyM.BrockmannJ.H. eds). Cambridge University PressCambridge p.  251-299.

TibbettsE.A.DaleJ. (2004). A socially enforced signal of quality in a paper wasp. — Nature 432: 218-222.

TibbettsE.A.SheehanM.J. (2011). Facial patterns are a conventional signal of agonistic ability in Polistes exclamans paper wasps. — Ethology 117: 1138-1146.

TibbettsE.A.MettlerA.LevyS. (2010). Mutual assessment via visual status signals in Polistes dominulus wasps. — Biol. Lett. 6: 10-13.

ToddP.A.WangW.Y.HuangH.BelleC.C.LimM.L.YeoD.C. (2011). The function of colourful facial bands in mangrove crab (Perisesarma) communication. — J. Exp. Mar. Biol. Ecol. 40: 26-33.

TokarzR.R.PatersonA.V.McMannS. (2003). Laboratory and field test of the functional significance of the male’s dewlap in the lizard Anolis sagrei. — Copeia: 502-511.

UetzP.HošekJ. (2015). The reptile database. — Available online at http://www.reptile-database.org (accessed October 2015).

WellenreutherM.SvenssonE.I.HanssonB. (2014). Sexual selection and genetic color polymorphisms in animals. — Mol. Ecol. 23: 5398-5414.

WhileG.M.MichaelidesS.HeathcoteR.J.MacGregorH.E.A.ZajacN.BenindeJ.CarazoP.Pérez i de LanuzaG.SacchiR.ZuffiM.A.L.HorváthováT.FresnilloB.SchulteU.VeithM.HochkirchA.UllerT. (2015). Sexual selection drives asymmetric introgression in wall lizards. — Ecol. Lett. 18: 1366-1375.

WhitingM.J. (1999). When to be neighbourly: differential agonistic responses in the lizard Platysaurus broadleyi. — Behav. Ecol. Soc. 46: 210-214.

WhitingM.J.Stuart-FoxD.M.O’ConnorD.FirthD.BennettN.C.BlombergS.P. (2006). Ultraviolet signals ultra-aggression in a lizard. — Anim. Behav. 72: 353-363.

WilcoxC.D.DoveS.B.McDavidW.D.GreerD.B. (2002). UTHSCSA ImageTool Ver. 3.0. — University of Texas Health Science Center San Antonio TX.

YewersM.S.C.PrykeS.Stuart-FoxD. (2016). Behavioural differences across contexts may indicate morph-specific strategies in the lizard Ctenophorus decresii. — Anim. Behav. 111: 329-339.

Figures

  • View in gallery

    Left: male common wall lizard Podarcis muralis. This species has a relatively cryptic dorsum and conspicuous ventrolateral coloration. The ventrolateral area usually presents a complex pattern with black and UV-blue patches. Right: ventral view of both sexes to illustrate the colour polymorphism. Individuals from the three main morphs present orange, yellow or white ventral coloration. In our study population, the ventral colour is restricted to the throat in females, but extends to the belly in males. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    (a) Means of the relative blue area (ABlue) in the ventrolateral patches, for each morph. Error bars represent the standard error of the mean. (b) Representative pictures of the ventrolateral pattern in males of the three pure morphs. Blue coloration sometimes extends to the second row of ventral scales in orange males, while this is rare in white or yellow morph males. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Within-morph means of fighting ability estimates obtained with the Bradley–Terry model. Error bars represent the standard error of the mean. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Scatterplot showing the relationship between fighting ability and black relative area in the ventrolateral scales (ABlack) for each individual participating in the tournament.

  • View in gallery

    3D plot exploring the relationship between aggression ratio and the interaction between the black relative area (ABlack) of both opponents.

  • View in gallery

    Tournament network including all the 76 contests (out of 99 staged) in which a winner could be determined. Numbers inside circles denote individuals and the colour represents their morph (o, red; w, grey; y, yellow). Arrows connect opponents that were confronted, pointing toward the loser. The Bradley–Terry model calculates individual fighting ability estimates from nested tournament networks such as this one. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

  • View in gallery

    Scatterplot showing the relationship between mean aggression score (AS) and fighting ability for each individual participating in the tournament.

  • View in gallery

    Box plots showing the values of BCI and SVL separated by colour morph.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 21 21 9
Full Text Views 8 8 8
PDF Downloads 1 1 1
EPUB Downloads 0 0 0