Urban mountain chickadees (Poecile gambeli) begin vocalizing earlier, and have greater dawn chorus output than rural males

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Vocal output during the dawn chorus is often an honest indicator of male quality, where males with greater access to food and in better condition produce more vocalizations. We compare the vocal output among male mountain chickadees living along an urbanization gradient to assess how urbanization affects male signalling. Chickadees forage in the canopy, and because urban habitats are associated with lower canopy volume, we predicted that urban habitats may offer lower food and thus lead to reduced song output. Contrary to our predictions, males in more urbanized habitats had greater vocal output. We suggest that despite decreased canopy cover, urban birds may have greater access to food in both the breeding and pre-breeding seasons due to differences in both supplementary resources and vegetation composition of urban vs rural landscapes in our area. Living in urban habitats may allow males to enter the breeding season in better condition.



AlataloR.V.GlynnC.LundbergA. (1990). Singing rate and female attraction in the pied flycatcher: an experiment. — Anim. Behav. 39: 601-603.

AnderiesJ.M.KattiM.ShochatE. (2007). Living in the city: resource availability, predation, and bird population dynamics in urban areas. — J. Theor. Biol. 247: 36-49.

Arroyo-SolísA.CastilloJ.M.FigueroaE.López-SánchezJ.L.SlabbekoornH. (2013). Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. — J. Avian Biol. 43: 1-9.

BakerP.J.MolonyS.E.StoneE.CuthillI.C.HarrisS. (2008). Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations?Ibis 150: 86-99.

BarnettC.A.BriskieJ.V. (2007). Energetic state and the performance of dawn chorus in silvereyes (Zosterops lateralis). — Behav. Ecol. Sociobiol. 61: 579-587.

BatesD.MaechlerM.BolkerB.WalkerS. (2017). lme4: linear mixed-effects models using Eigen and S4. — Available online at http://CRAN.R-project.org/package=lme4.

BergM.L.BeintemaN.H.WelbergenJ.A.KomdeurJ. (2005). Singing as a handicap: the effects of food availability and weather on song output in the Australian reed warbler Acrocephalus australis. — J. Avian Biol. 36: 102-109.

BloomfieldL.L.CharrierI.SturdyC.B. (2004). Note types and coding in parid vocalizations. II: the chick-a-dee call of the mountain chickadee (Poecile gambeli). — Can. J. Zool. 82: 780-793.

BrändleM.BrandlR. (2001). Species richness of insects and mites on trees: expanding Southwood. — J. Anim. Ecol. 70: 491-504.

BuchananK.L.CatchpoleC.K.LewisJ.W.LodgeA. (1999). Song as an indicator of parasitism in the sedge warbler. — Anim. Behav. 57: 307-314.

CatchpoleC.K.SlaterP.J.B. (2008). Bird song: biological themes and variations, 2nd edn.Cambridge University Press, New York, NY.

CuthillI.C.MacDonaldW.A. (1990). Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. — Behav. Ecol. Sociobiol. 26: 209-216.

Da SilvaA.SamploniusJ.M.SchlichtE.ValcuM.KempenaersB. (2014). Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. — Behav. Ecol. DOI:10.1092/beheco/aru103.

Da SilvaA.ValcuM.KempenaersB. (2015). Light pollution alters the phenology of dawn and dusk singing in common European songbirds. — Phil. Trans. Roy. Soc. B: Biol. Sci. DOI:10.1098/rstb.2014.0126.

DahlstenD.L.BrennanL.A.McCallumD.A.GauntS.L. (2002). Chestnut-backed chickadee (Poecile rufescens). — In: The birds of North America online (Poole, A., ed.). Cornell Lab of Ornithology, Ithaca, NY. DOI:10.2173/bna.689.

DíazM.ParraA.GallardoC. (2011). Serins respond to anthropogenic noice by increasing vocal activity. — Behav. Ecol. 22: 332-336.

DominoniD.M.GreifS.NemethE.BrummH. (2016). Airport nose predicts song timing of European birds. — Ecol. Evol. 6: 6151-6159.

DoutrelantC.BlondelJ.PerretP.LambrechtsM. (2000). Blue tit song repertoire size, male quality and interspecific competition. — J. Avian Biol. 31: 360-366.

DowlingJ.L.LutherD.A.MarraP.P. (2012). Comparative effects of urban development and anthropogenic noise on bird songs. — Behav. Ecol. 23: 201-209.

FickenM.S.McLarenM.A.HailmanJ.P. (1996). Boreal chickadee (Poecile hudsonicus). — In: The birds of North American online (Poole, A., ed.). Cornell Lab of Ornithology, Ithaca, NY. DOI:10.2173/bna.254.

FooteJ.R.FitzsimmonsL.P.MennillD.J.RatcliffeL.M. (2008). Tied to the nest: male black-capped chickadees decrease dawn chorus movement behaviour when their mate is fertile. — Anim. Behav. 76: 1227-1233.

FooteJ.R.MennillD.J.RatcliffeL.M.SmithS.M. (2010). Black-capped chickadee (Poecile atricapillus). — In: The birds of North America online (Rodewald, P.G., ed.). Cornell Lab of Ornithology, Ithaca, NY. DOI:10.2173/bna.39.

GaddisP.K. (1985). Structure and variability in the vocal repertoire of the mountain chickadee. — Wilson Bull. 97: 30-46.

GilD.GahrM. (2002). The honesty of bird song: multiple constraints for multiple traits. — Trends Ecol. Evol. 17: 133-141.

GilD.HonarmandM.PascualJ.Pérez-MenaE.GarciaC.M. (2015). Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. — Behav. Ecol. 26: 435-443.

GladąlskiM.BańburnaM.KalińskiA.MarkowskiM.SkwarskaJ.WawrzyniakJ.ZielińskiP.CyżewskaI.BańburnaJ. (2015). Inter-annual and inter-habitat variation in breeding performance of blue tits (Cyanistes caeruleus) in central Poland. — Ornis Fenn. 92: 34-42.

GodfreyJ.D. (2003). Potential use of energy expenditure of individual birds to assess quality of their habitats. — In: Conservation applications of measuring energy expenditure of New Zealand birds: assessing habitat quality and cost of carrying radio transmitters. Science for conservation 214 (Williams, M., comp.). Department of Conservation, Wellington, New Zealand, p.  11-24.

GoodwinS.E.PodosJ. (2013). Shifts of song frequencies in response to masking tones. — Anim. Behav. 85: 435-440.

GravaA.OtterK.A.GravaT.LaZerteS. (2013). Character displacement in dawn chorusing behaviour of sympatric mountain and black-capped chickadees. — Anim. Behav. 86: 177-187.

GravaT.GravaA.OtterK.A. (2009). Supplemental feeding and dawn singing in black-capped chickadees. — Condor 111: 560-564.

GrossK.PasinelliG.KuncH.P. (2010). Behavioral plasticity allows short-term adjustment to a novel environment. — Am. Nat. 176: 456-464.

HoescheleM.MoscickiM.K.OtterK.A.van OortH.FortK.T.FarrellT.M.LeeH.RobsonS.W.J.SturdyC.B. (2010). Dominance signalled in an acoustic ornament. — Anim. Behav. 79: 657-664.

KempenaersB.Pernilla BorgströmP.LoësP.SchlichtE.ValcuM. (2010). Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. — Curr. Biol. 20: 1735-1739.

KuznetsovaA.BrockhoffP.B.ChristensenR.H.B. (2016). lmerTest: tests in linear mixed effects models. — R package version 2.0-33. Available online at https://CRAN.R-project.org/package=lmerTest.

LaZerteS.OtterK.A.SlabbekoornH. (2017). Mountain chickadees adjust songs, calls and chorus composition with increasing ambient and experimental anthropogenic noise. — Urban Ecosyst. 20: 989-1000. DOI:10.1007/s11252-017-0652-7.

LaZerteS.OtterK.A.SlabbekoornH. (2015). Relative effects of ambient noise and habitat openness on signal transfer for chickadee vocalizations in rural and urban green-spaces. — Bioacoustics 24: 233-252.

LaZerteS.SlabbekoornH.OtterK.A. (2016). Learning to cope: vocal adjustment to urban noise is correlated with prior experience in black-capped chickadees. — Proc. Roy. Soc. Lond. B: Biol. Sci. 283. DOI:10.1098/rspb.2016.1058.

MariniK.L.D.OtterK.A.LaZerteS.E.ReudinkM.W. (2017). Urban environments are associated with earlier clutches and faster nestling feather growth compared to natural habitats. — Urban Ecosyst. DOI:10.1007/s11252-017-0681-2.

MarzluffJ.M. (2001). Worldwide urbanization and its effects on birds. — In: Avian ecology and conservation in an urbanizing world ( MarzluffJ.M.BowmanR.DonnellyR., eds). Springer, Cambridge, MA, p.  19-47.

McCallumD.A.GrundelR.DahlstenD.L. (1999). Mountain chickadee (Poecile gambeli). — In: The birds of North America online (Poole, A., ed.). Cornell Lab of Ornithology, Ithaca, NY. DOI:10.2173/bna.453.

MøllerA.P. (1991). Parasite load reduces song output in a passerine bird. — Anim. Behav. 41: 723-730.

MurphyM.T.SextoK.DolanA.C.RedmondL.J. (2008). Dawn song of the eastern kingbird: an honest signal of male quality?Anim. Behav. 75: 1075-1084.

NemethE.PierettiN.ZollingerS.A.GeberzahnN.ParteckeJ.MirandaA.C.BrummH. (2013). Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. — Proc. Roy. Soc. Lond. B: Biol. Sci. 280: 20122798.

NowickiS.HasselquistD.BenschS.PetersS. (2000). Nestling growth and song repertoire size in great reed warblers: evidence for song learning as an indicator mechanism in mate choice. — Proc. Roy. Soc. Lond. B: Biol. Sci. 267: 2419-2424.

NowickiS.PetersS.PodosJ. (1998). Song learning, early nutrition and sexual selection in songbirds. — Am. Zool. 38: 179-190.

OtterK.ChruszczB.RatcliffeL. (1997). Honest advertisement and song output during the dawn chorus of black-capped chickadees. — Behav. Ecol. 8: 167-173.

PotvinD.A.ParrisK.M.MulderR.A. (2011). Geographically pervasive effects of urban noise on frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis). — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 2464-2469.

R Core Team (2017). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna. Available online at https://www.R-project.org/.

RitschardM.BrummH. (2012). Zebra finch song reflects current food availability. — Evol. Ecol. 26: 801-812.

RobbG.N.McDonaldR.A.ChamberlainD.E.BearhopS. (2008). Food for thought: supplementary feeding as a driver of ecological change in avian populations. — Front. Ecol. Environ. 6: 476-484.

RodewaldA.D.ShustackD.P.HitchcockL.E. (2010). Exotic shrubs as ephemeral ecological traps for nesting birds. — Biol. Invasions 12: 33-39.

RolandoA.MaffeiG.PulcherC.GiusoA. (1997). Avian community structure along an urbanization gradient. — Ital. J. Zool. 64: 341-349.

RyanM.J.BrenowitzE.A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. — Am. Nat. 126: 87-100.

SaarikiviJ.HerczegG. (2014). Do hole-nesting passerine birds fare well at artificial suburban forest edges?Ann. Zool. Fenn. 51: 488-494.

SalmónP.NilssonJ.F.NordA.BenschS.IsakssonC. (2016). Urban environment shortens telomere length in nestling great tits, Parus major. — Biol. Lett. 12: 20160155.

SekiS.TakanoH. (1998). Caterpillar abundance in the territory affect the breeding performance of great tit Parus major minor. — Oecologia 114: 514-521.

SlabbekoornH.den Boer-VisserA. (2006). Cities change the songs of birds. — Curr. Biol. 16: 2326-2331.

SlabbekoornH.PeetM. (2003). Birds sing at higher pitch in urban noise. — Nature 424: 267.

SmithS.M. (1991). The black-capped chickadee: behavioral ecology and natural history. — Cornell University Press, Ithaca, NY.

SouthwoodT.R.E. (1961). The number of species of insect associated with various trees. — J. Anim. Ecol. 30: 1-8.

SpechtR. (2012). Avisoft-SASLab Pro. — Avisoft Bioacoustics. Comstock, Ithaca, NY.

The GIMP Team (1997–2014). GIMP 2.8.10. — Available online at https://www.gimp.org.

ThomasR.J. (1999). The effect of variability in the food supply on the daily singing routines of European robins: a test of a stochastic dynamic programming model. — Anim. Behav. 57: 365-369.

van OortH.OtterK.A.FortK.T.HolschuhC.I. (2006). Habitat quality, social dominance and dawn chorus song output in black-capped chickadees. — Ethology 112: 772-778.

WassermanF.E.CiglianoJ.A. (1991). Song output and stimulation of the female in white-throated sparrows. — Behav. Ecol. Sociobiol. 29: 55-59.

WawrzyniakJ.KalinskiA.GladalskiM.BańburaM.MarkowskiM.SkwarskaJ.ZielińskiP.CyżewskaI.BańburaJ. (2015). Long-term variation in laying date and clutch size of the great tit Parus major in central Poland: a comparison between urban parkland and deciduous forest. — Ardeola 62: 311-322.

WeldonA.J.HaddadN.M. (2005). The effects of patch shape on indigo buntings: evidence for an ecological trap. — Ecology 86: 1422-1431.

WickhamH. (2009). ggplot2: elegant graphics for data analysis. — Springer, New York, NY. Available online at http://ggplot2.org.

WoodW.E.YezerinacS.M. (2006). Song sparrow (Melospiza melodia) song varies with urban noise. — Auk 123: 650-659.


  • Spectrogram of the most common song type (A) and call (B) recorded from male mountain chickadees during the dawn chorus in our Kamloops populations.

    View in gallery
  • Vocal output (A) increased in male mountain chickadees living in habitats with more urban features (lower habitat index scores) compared to those living in more natural habitats (higher habitat index scores), and at the same time, vocal output increased through the season (B), regardless of habitat type. Represented are the result of a linear model with N=44 males.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 7 7 7
Full Text Views 4 4 4
PDF Downloads 1 1 1
EPUB Downloads 1 1 1