Mating system, male territoriality and agility as predictors of the evolution of sexual size dimorphism in hummingbirds (Aves: Trochilidae)

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Male and female animals often exhibit differences in body size; this difference is known as sexual size dimorphism (SSD). Hummingbirds are an excellent model system to test functional hypotheses of SSD because they exhibit a wide range of body sizes and reproductive behaviour between the sexes. Here, using phylogenetic comparative methods, we tested whether mating system, male territoriality and agility predicted the evolution of SSD in this avian family. Our results first suggest that evolutionary increases in male-biased SSD are related to increases in lekking behaviour. Second, we found that male agility is positively related to increases in male biased-SSD albeit this is only likely to occur in males of territorial species. Finally, we found an allometric pattern for SSD consistent with Rensch’s rule that was not explained by our estimates of male competition and agility.

Mating system, male territoriality and agility as predictors of the evolution of sexual size dimorphism in hummingbirds (Aves: Trochilidae)

in Behaviour

Sections

References

AbouheifE. & FairbairnD.J. (1997). A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. — Am. Nat. 149: 540-562.

AnderssonM. (1994). Sexual selection. — Princeton University PressPrinceton, NJ.

AnderssonM. & NorbergR.Å. (1981). Evolution of reversed sexual size dimorphism and role partitioning among predatory birds, with a size scaling of flight performance. — Biol. J. Linn. Soc. 15: 105-130.

AtwoodJ.L.FitzV.L. & BamesbergerJ. (1991). Temporal patterns of singing activity at leks of the White-bellied Emerald. — Wilson Bull. 103: 373-386.

BatesonM.HealyS.D. & HurlyT.A. (2003). Context-dependent foraging decisions in rufous hummingbirds. — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 1271-1276.

BlanckenhornW.U.MeierR. & TederT. (2007). Rensch’s rule in insects: patterns among and within species. — In: Sex size and gender roles: evolutionary studies of sexual size dimorphism (FairbairnD.J.BlanckenhornW.U. & SzékelyT. eds). Oxford University PressOxford p. 60-70.

BlombergS.P. & Garland Jr.T. (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. — J. Evol. Biol. 15: 899-910.

BlomqvistD.JohanssonO.C.UngerU.LarssonM. & FlodinL.Å. (1997). Male aerial display and reversed sexual size dimorphism in the dunlin. — Anim. Behav. 54: 1291-1299.

BrownJ.L. (1964). The evolution of diversity in avian territorial systems. — Wilson Bull. 76: 160-169.

ButlerM.A.SawyerS.A. & LososJ.B. (2007). Sexual dimorphism and adaptive radiation in Anolis lizards. — Nature 447: 202-205.

CarpenterF.L. (1987). Food, abundance and territoriality: to defend or not to defend?Am. Zool. 27: 387-399.

ChaiP. & MillardD. (1997). Flight and size constraints: hovering performance of large hummingbirds under maximal loading. — J. Exp. Biol. 200: 2757-2763.

Clutton-BrockT.H. (1985). Size, sexual dimorphism, and polygyny in primates. — In: Size and scaling in primate biology (JungersW.L. ed.). PlenumNew York, NY p. 51-60.

Clutton-BrockT.H. & HarveyP.H. (1977). Primate ecology and social organization. — J. Zool. 183: 1-39.

Clutton-BrockT.H.HarveyP.H. & RudderB. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates. — Nature 269: 797-800.

ColwellR.K. (2000). Rensch’s rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. — Am. Nat. 156: 495-510.

CoxR.M.SkellyS.L. & John-AlderH.B. (2003). A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. — Evolution 57: 1653-1669.

DaleJ.DunnP.O.FiguerolaJ.LislevandT.SzékelyT. & WhittinghamL.A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 2971-2979.

DarwinC. (1871). The descent of man and selection in relation to sex. — John MurrayLondon.

DunnP.O.WhittinghamL.A. & PitcherT.E. (2001). Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. — Evolution 55: 161-175.

FairbairnD.J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. — Annu. Rev. Ecol. Syst. 28: 659-687.

FairbairnD.J. (2007). Introduction: the enigma of sexual size dimorphism. — In: Sex size and gender roles: evolutionary studies of sexual size dimorphism (FairbairnD.J.BlanckenhornW.U. & SzékelyT. eds). Oxford University PressOxford p. 1-10.

FairbairnD.J. (2013). Odd couples: extraordinary differences between the sexes in the animal kingdom. — Princeton University PressPrinceton, NJ.

FeinsingerP. & ChaplinS.B. (1975). On the relationship between wing disc loading and foraging strategy in hummingbirds. — Am. Nat. 109: 217-224.

FeinsingerP.ColwellR.K.TerborghJ. & ChaplinS.B. (1979). Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. — Am. Nat. 113: 481-497.

FelsensteinJ. (1985). Phylogenies and the comparative method. — Am. Nat. 125: 1-15.

FiguerolaJ. (1999). A comparative study on the evolution of reversed size dimorphism in monogamous waders. — Biol. J. Linn. Soc. 67: 1-18.

FreckletonR.P.HarveyP.H. & PagelM. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. — Am. Nat. 160: 712-726.

GarlandT. Jr. & IvesA.R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. — Am. Nat. 155: 346-364.

GarlandT. Jr.HarveyP.H. & IvesA.R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. — Syst. Biol. 41: 18-32.

GhiselinM.T. (1974). The economy of nature and the evolution of sex. — University of California PressLos Angeles, CA.

GowdaV.TemelesE.J. & KressW.J. (2012). Territorial fidelity to nectar sources by Purple-throated caribs, Eulampis jugularis. — Wilson J. Ornithol. 124: 81-86.

GriggioM.DevigiliA.HoiH. & PilastroA. (2009). Female ornamentation and directional male mate preference in the rock sparrow. — Behav. Ecol. 20: 1072-1078.

GriggioM.ValeraF.CasasA. & PilastroA. (2005). Male prefer ornamented females: a field experiment of male choice in the rock sparrow. — Anim. Behav. 69: 1243-1250.

HarveyP.H. & PagelM.D. (1991). The comparative method in evolutionary biology. — Oxford University PressOxford.

HeadG. (1995). Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae). — Evolution 49: 776-781.

HedenströmA. (1992). Flight performance in relation to fuel load in birds. — J. Theor. Biol. 158: 535-537.

HedrickA.V. & TemelesE.J. (1989). The evolution of sexual dimorphism in animals: hypotheses and tests. — Trends Ecol. Evol. 4: 136-138.

HöglundJ. (1989). Size and plumage dimorphism in lek-breeding birds: a comparative analysis. — Am. Nat. 134: 72-87.

HoněkA. (1993). Intraspecific variation in body size and fecundity in insects: a general relationship. — Oikos 66: 483-492.

HughesP.M. & RaynerJ.M.V. (1991). Addition of artificial loads to long-eared bats Plecotus auritus: handicapping flight performance. — J. Exp. Biol. 161: 285-298.

JanzenD. (1971). Euglossine bees as long-distance pollinators of tropical plants. — Science 171: 203-205.

Jehl Jr.J.R. & Murray Jr.B.G. (1986). The evolution of normal and reverse sexual size dimorphism in shorebirds and other birds. — In: Current ornithology (JohnstonR.F. ed.). PlenumNew York, NY p. 1-86.

Jiménez-ArcosV.H.Sanabria-UrbánS. & Cueva del CastilloR. (2017). The interplay between natural and sexual selection in the evolution of sexual size dimorphism in Sceloporus lizards (Squamata: Phrynosomatidae). — Ecol. Evol. 7: 905-917.

JonesK.E. & PurvisA. (1997). An optimum body size for mammals? Comparative evidence from bats. — Funct. Ecol. 11: 751-756.

Kodric-BrownA. & BrownJ.H. (1978). Influence of economics, interspecific competition, and sexual dimorphism on territoriality of migrant Rufous hummingbirds. — Ecology 59: 285-296.

LeBasN.R.HockhamL.R. & RitchieM.G. (2003). Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 2159-2165.

LegaspiJ.C. & Legaspi Jr.B.C. (2005). Body weights and egg loads in field-collected Podisus maculiventris (Heteroptera: Pentatomidae). — Fla. Entomol. 88: 38-42.

LindenforsP. & TullbergB.S. (1998). Phylogenetic analyses of primate size evolution: the consequences of sexual selection. — Biol. J. Linn. Soc. 64: 413-447.

LindenforsP.GittlemanJ.L. & JonesK.E. (2007). Sexual size dimorphism in mammals. — In: Sex size and gender roles: evolutionary studies of sexual size dimorphism (FairbairnD.J.BlanckenhornW.U. & SzékelyT. eds). Oxford University PressOxford p. 16-26.

LindenforsP.TullbergB. & BiuwM. (2002). Phylogenetic analyses of sexual selection and sexual size dimorphism in pinnipeds. — Behav. Ecol. Sociobiol. 52: 188-193.

LoisonA.GaillardJ.M.PélabonC. & YoccozN.G. (1999). What factors shape sexual size dimorphism in ungulates?Evol. Ecol. Res. 1: 611-633.

MaddisonW.P. & MaddisonD.R. (2015). Mesquite: a modular system for evolutionary analysis. — Version 3.04. Available online at http://mesquiteproject.org.

MartinsE.P. & HansenT.F. (1997). Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. — Am. Nat. 149: 646-667.

McGuireJ.A.WittC.C.Remsen Jr.J.V.CorlA.RaboskyD.L.AltshulerD.L. & DudleyR. (2014). Molecular phylogenetics and the diversification of hummingbirds. — Curr. Biol. 24: 910-916.

MetcalfeN.B. & UreS.E. (1995). Diurnal variation in flight performance and hence potential predation risk in small birds. — Proc. Roy. Soc. Lond. B: Biol. Sci. 261: 395-400.

MitaniJ.C.Gros-LouisJ. & RichardsA.F. (1996). Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. — Am. Nat. 147: 966-980.

MooreJ.L. (1997). Ecomorphology of rufous hummingbirds: an investigation of maneuverability and agility on four age-sex classes. — MSc Thesis University of British Columbia Vancouverm BC.

OakesE.J. (1992). Lekking and the evolution of sexual dimorphism in birds: comparative approaches. — Am. Nat. 140: 665-684.

OrmeD.FreckletonR.ThomasG.PetzoldtT.FritzS.IsaacN. & PearseW. (2013). caper: comparative analyses of phylogenetics and evolution in R. — R package version 0.5.2. Avaialble online at https://CRAN.R-project.org/package=caper.

OwensI.P.F. & HartleyI.R. (1998). Sexual dimorphism in birds: why are there so many different forms of dimorphism?Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 397-407.

PagelM. (1997). Inferring evolutionary processes from phylogenies. — Zool. Script. 26: 331-348.

PagelM. (1999). Inferring the historical patterns of biological evolution. — Nature 401: 877-884.

PatonD.C. & CarpenterF.L. (1984). Peripheral foraging by territorial rufous hummingbirds: defense by exploitation. — Ecology 65: 1808-1819.

PayneR.B. (1984). Sexual selection, lek and arena behavior, and sexual size dimorphism in birds. — Ornithol. Monogr. 33: 1-52.

PearsonO.P. (1954). The daily energy requirements of a wild Anna hummingbird. — Condor 56: 317-322.

Perez-BarberíaF.J.GordonI.J. & PagelM. (2002). The origins of sexual dimorphism in body size in ungulates. — Evolution 56: 1276-1285.

PilastroA.GriggioM. & MatessiG. (2003). Male rock sparrows adjust their breeding strategy according to female ornamentation: parental of mating investment?Anim. Behav. 66: 265-271.

PowersD.R. & McKeeT. (1994). The effect of food availability on time and energy expenditures of territorial and non-territorial hummingbirds. — Condor 96: 1064-1075.

PrenterJ.ElwoodR.W. & MontgomeryW.I. (1999). Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis. — Evolution 53: 1987-1994.

R Core Team (2017). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna available online at http://www.R-project.org/.

RaihaniG.SzékelyT.Serrano-MenesesM.A.PitraC. & GoriupP. (2006). The influence of sexual selection and male agility on sexual size dimorphism in bustards (Otididae). — Anim. Behav. 71: 833-838.

ReissM.J. (1989). The allometry of growth and reproduction. — Cambridge University PressCambridge.

RenschB. (1950). Die abhangigkeit der relativen sexualdifferenz von der korpergroße. — Bonn Zool. Bull. 1: 58-69.

RidleyM. & ThompsonD.J. (1979). Size and mating in Asellus aquaticus (Crustacea: Isopoda). — Z. Tierpsychol. 51: 380-397.

SelanderR.K. (1972). Sexual selection and dimorphism in birds. — In: Sexual selection and the descent of man 1871–1971 (CampbellB. ed.). AldineChicago, IL p. 180-230.

Serrano-MenesesM.A.Córdoba-AguilarA.Azpilicueta-AmorínM.González-SorianoE. & SzékelyT. (2008). Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. — J. Evol. Biol. 21: 1259-1273.

Serrano-MenesesM.A. & SzékelyT. (2006). Sexual size dimorphism in seabirds: sexual selection, fecundity selection and differential niche-utilisation. — Oikos 113: 385-394.

ShineR. (1979). Sexual selection and sexual dimorphism in the Amphibia. — Copeia: 297-306.

ShineR. (1989). Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. — Q. Rev. Biol. 64: 419-461.

ShineR. (1991). Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. — Am. Nat. 138: 103-122.

SkutchA.F. (1958). Life history of the Violet-headed hummingbird. — Wilson Bull. 70: 5-19.

SmithR.J. (1999). Statistics of sexual size dimorphism. — J. Hum. Evol. 36: 423-458.

SokalR.R. & RohlfF.J. (2012). Biometry: the principles and practice of statistics in biological research. — W.H. FreemanNew York, NY.

StephensP.R. & WiensJ.J. (2009). Evolution of sexual size dimorphisms in emydid turtles: ecological dimorphism, Rensch’s rule, and sympatric divergence. — Evolution 63: 910-925.

SzékelyT.ReynoldsJ.D. & FiguerolaJ. (2000). Sexual size dimorphism in shorebirds, gulls and alcids: the influence of sexual and natural selection. — Evolution 54: 1404-1413.

SzékelyT.FreckletonR.P. & ReynoldsJ.D. (2004). Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. — Proc. Natl. Acad. Sci. USA 101: 12224-12227.

SzékelyT.LislevandT. & FiguerolaJ. (2007). Sexual size dimorphism in birds. — In: Sex size and gender roles: evolutionary studies of sexual size dimorphism (FairbairnD.J.BlanckenhornW.U. & SzékelyT. eds). Oxford University PressOxford p. 27-37.

TemelesE.J. & KressW.J. (2003). Adaptation in a plant-hummingbird association. — Science 300: 630-633.

TemelesE.J. & KressW.J. (2010). Mate choice and mate competition by a tropical hummingbird at a floral resource. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 1607-1613.

TemelesE.J.PanI.L.BrennanJ.L. & HorwittJ.N. (2000). Evidence for ecological causation of sexual dimorphism in a hummingbird. — Science 289: 441-443.

TemelesE.J.KoulourisC.R.SanderS.E. & KressW.J. (2009). Effect of flower shape and size on foraging performance and trade-offs in a tropical hummingbird. — Ecology 90: 1147-1161.

TieboutH.M. (1993). Mechanisms of competition in tropical hummingbirds: metabolic costs for losers and winners. — Ecology 74: 405-418.

TriversR.L. (1972). Parental investment and sexual selection. — In: Sexual selection and the descent of man 1871–1971 (CampbellB. ed.). HeinemannLondon p. 136-179.

WartonD.I.DuursmaR.A.FalsterD.S. & TaskinenS. (2012). smatr 3 — an R package for estimation and inference about allometric lines. — Methods Ecol. Evol. 3: 257-259.

WartonD.I.WrightI.J.FalsterD.S. & WestobyM. (2006). Bivariate line-fitting methods for allometry. — Biol. Rev. 81: 259-291.

WebsterM.S. (1992). Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). — Evolution 46: 1621-1641.

WitterM.S.CuthillI.C. & BonserR.H.C. (1994). Experimental investigations of mass-dependent predation risk in the European starling, Sturnus vulgaris. — Anim. Behav. 48: 201-222.

WolfL.L. (1975). “Prostitution” behavior in a tropical hummingbird. — Condor 77: 140-144.

WolfL.L. & StilesF.G. (1970). Evolution of pair cooperation in a tropical hummingbird. — Evolution 24: 759-773.

WolfL.L. & HainsworthF.R. (1971). Time and energy budgets of territorial hummingbirds. — Ecology 52: 980-988.

WolfL.L.HainsworthF.R. & GillF.B. (1975). Foraging efficiencies and time budgets in nectar-feeding birds. — Ecology 56: 117-128.

WolfL.L.HainsworthF.R. & StilesF.G. (1972). Energetics of foraging: rate and efficiency of nectar extraction by hummingbirds. — Science 176: 1351-1352.

AldrichE.C. (1945). Nesting of the Allen hummingbird. — Condor 47: 137-148.

AraújoF.P.Almeida-BarbosaA.A. & OliveiraP.E. (2011). Floral resources and hummingbirds on an island of flooded forest in central Brazil. — Flora 206: 827-835.

ArizmendiM.C. (1986). Interacción entre los colibríes y su recurso vegetal en Chamela Jal. — BSc Thesis Universidad Nacional Autónoma de México México.

AtwoodJ.L.FitzV.L. & BamesbergerJ.E. (1991). Temporal patterns of singing activity at leks of the White-bellied Emerald. — Wilson Bull. 103: 373-386.

BarashD.P. (1972). Lek behavior in the Broad-tailed hummingbird. — Wilson Bull. 84: 202-203.

BleiweissR. (1998). Phylogeny, body mass, and genetic consequences of lek-mating behavior in hummingbirds. — Mol. Biol. Evol. 15: 492-498.

ChaiP. & MillardD. (1997). Flight and size constraints: hovering performance of large hummingbirds under maximal loading. — J. Exp. Biol. 200: 2757-2763.

ColwellR.K. (1973). Competition and coexistence in a simple tropical community. — Am. Nat. 107: 737-760.

ColwellR.K. (1989). Hummingbirds of the Juan Fernández islands: natural history, evolution and population status. — Ibis 131: 548-566.

ColwellR.K. (2000). Rensch’s rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. — Am. Nat. 156: 495-510.

CottonP.A. (1998a). The hummingbird community of a lowland Amazonian rainforest. — Ibis 140: 512-521.

CottonP.A. (1998b). Coevolution in an Amazonian hummingbird-plant community. — Ibis 140: 639-646.

DavisT.A.W. (1958). The displays and nests of three forest hummingbirds of British Guiana. — Ibis 100: 31-39.

del HoyoJ.ElliottA.SargatalJ.ChristieD.A. & de JuanaE. (2015). Handbook of the birds of the world alive. — Lynx Editions available online at http://www.hbw.com/family/hummingbirds-trochilidae.

Díaz-ValenzuelaR.Lara-RodríguezN.Z.Ortiz-PulidoR.González-GarcíaF. & Ramírez-BautistaA. (2011). Some aspects of the reproductive biology of the Mexican Sheartail (Doricha eliza) in Central Veracruz. — Condor 113: 177-182.

FeinsingerP. (1976). Organization of a tropical guild of nectarivorous birds. — Ecol. Monogr. 46: 257-291.

FeinsingerP. & ColwellR.K. (1978). Community organization among Neotropical nectar-feeding birds. — Integr. Comp. Biol. 18: 779-795.

FeoT.J.MusserJ.M.BervJ. & ClarkC.J. (2015). Divergence in morphology, calls, song, mechanical sounds, and genetics supports species status for the Inaguan hummingbird (Trochilidae: Calliphlox “evelynae” lyrura). — Auk 132: 248-264.

FoxR.P. (1954). Plumages and territorial behavior of the Lucifer hummingbid in the Chisos Mountains, Texas. — Auk 71: 465-466.

GowdaV.TemelesE.J. & KressW.J. (2012). Territorial fidelity to nectar sources by Purple-throated caribs, Eulampis jugularis. — Wilson J. Ornithol. Soc. 124: 81-86.

Hamilton IIIW.J. (1965). Sun-oriented display of the Anna’s hummingbird. — Wilson Bull. 77: 38-44.

Hernández-VegaN.J. (2014). Evolución del dimorfismo sexual en colibríes (Aves: Trochilidae). — MSc Thesis Universidad Nacional Autónoma de México México.

HöglundJ. (1989). Size and plumage dimorphism in lek-breeding birds: a comparative analysis. — Am. Nat. 134: 72-87.

HöglundJ. & AlataloR. (1995). Leks. Monographs in behavior and ecology. — Princeton University PressPrinceton, NJ.

HowellS.N.G. (2003). Hummingbirds of North America the photographic guide. — Princeton University PressPrinceton, NJ.

HurlyT.A.ScottR.D. & HealyS.D. (2001). The function of displays of male Rufous hummingbirds. — Condor 103: 647-651.

JohnsgardP.A. (1997). The hummingbirds of North America. — Smithsonian Institution PressWashington, DC.

Kodric-BrownA.BrownJ.H.ByersG.S. & GoriD.F. (1984). Organization of a tropical island community of hummingbirds and flowers. — Ecology 65: 1358-1368.

López-SegovianoG. (2012). Comportamiento territorial y preferencias de forrajeo del colibrí migratorio Selasphorus rufus dentro de un sitio invernal. — MSc Thesis Universidad Nacional Autónoma de México México.

MacDougall-ShackletonE. & HarbisonH. (1998). Singing behavior of lekking green hermits. — Condor 100: 149-152.

Martínez-GarcíaV.LaraC. & OrnelasJ.F. (2013). Lek characteristics and the static male song of the green violet-ear (Colibri thalassinus) during a 3-year study in a temperate forest of Central Mexico. — Ornitol. Neotrop. 24: 183-200.

OrnelasJ.F. (1995). Radiation in the genus Amazilia: a comparative approach to understanding the diversification of hummingbirds. — PhD Thesis University of Arizona Tucson AZ.

OrnelasJ.F. (2010). Nests, eggs, and young of the Azure-crowned hummingbird (Amazilia cyanocephala). — Wilson J. Ornithol. 122: 592-597.

OrnelasJ.F.GonzálezC. & UribeJ. (2002). Complex vocalizations and aerial displays of the Amethyst-throated hummingbird (Lampornis amethystinus). — Auk 119: 1141-1149.

Ortiz-PulidoR.PetersonA.T.RobbinsM.B.DíazR.Navarro-SigüenzaA.G. & Escalona-SeguraG. (2002). The Mexican Sheartail (Doricha eliza): morphology, behavior, distribution, and endangered status. — Wilson Bull. 114: 153-160.

PayneR.B. (1984). Sexual selection, lek and arena behavior, and sexual size dimorphism in birds. — Ornithol. Monogr. 33: 1-52.

PizoM.A. (2012). Lek behavior of the Plovercrest (Stephanoxis lalandi, Trochilidae). — Wilson J. Ornithol. 124: 106-112.

PizoM.A. & SilvaW.R. (2001). The dawn lek of the Swallow-tailed hummingbird. — Wilson Bull. 113: 388-397.

RamjohnC.L.LucasF.B.HayesF.E.BallahS.T.JohnsonN.C. & GarciaK.M. (2003). Lek mating behavior of the Sooty-capped hermit (Phaethornis augusti) in the Paria Peninsula of Venezuela. — J. Field Ornithol. 74: 205-209.

Rodríguez-FloresC.I. (2009). Dinámica de las estrategias de forrajeo por néctar en colibríes (Aves: Trochilidae) en la Reserva de la Biosfera Sierra de Manantlán (Jalisco México). — MSc Thesis Universidad Nacional Autónoma de México México.

Rodríguez-FloresC.I. & StilesF.G. (2005). Análisis ecomorfológico de una comunidad de colibríes ermitaños (Trochilidae, Phaetorninae) y sus flores en la Amazonia Colombiana. — Ornitol. Colomb. 3: 7-27.

RowleyJ.S. (1966). Breeding records of birds in the Sierra Madre del Sur, Oaxaca, Mexico. — Proc. West. Found. Vertebr. Zool. 1: 107-204.

SchuchmannK.L.WellerA.A. & HeynenI. (2000). Biogeography and taxonomy of the Andean hummingbird genus Haplophaedia Simon (Aves: Trochilidae), with the description of a new subspecies from southern Ecuador. — Orn. Anz. 39: 17-42.

SkutchA.F. (1964). Life histories of Hermit hummingbirds. — Auk 81: 5-25.

SnowB.K. (1973). The behavior and ecology of hermit hummingbirds in the Kanaku Mountains, Guyana. — Wilson Bull. 85: 163-177.

StilesF.G. (1982). Aggressive and courtship displays of the male Anna’s hummingbird. — Condor 84: 208-225.

StilesF.G. (1983). Systematics of the southern forms of Selasphorus (Trochilidae). — Auk 100: 311-325.

StilesF.G. (1995). Behavioral, ecological and morphological correlates of foraging for arthropods by the hummingbirds of a tropical wet forest. — Condor 97: 853-878.

StilesF.G. & WolfL.L. (1979). Ecology and evolution of lek mating behavior in the long-tailed hermit hummingbird. — Ornithol. Monograph. 27: 1-78.

TammS.ArmstrongD.P. & ToozeZ.J. (1989). Display behavior of male Calliope hummingbirds during the breeding season. — Condor 91: 272-279.

WellerA.A. (2000). Biogeography, geographic variation and habitat preference in the Amazilia hummingbird, Amazilia amazilia Lesson (Aves: Trochilidae), with notes on the status of Amazilia alticola Gould. — J. Ornithol. 141: 93-101.

WellerA.A. & SchuchmannK.-L. (2004). Biogeographic and taxonomic revision of the trainbearers Lesbia (Trochilidae), with the description of two new subspecies. — Ornithol. Anz. 43: 115-136.

WeskeJ.S. & TerborghJ.W. (1977). Phaethornis hoepckeae, a new species of hummingbird from Perú. — Condor 79: 143-147.

WileyR.H. (1971). Song groups in a singing assembly of little hermits. — Condor 73: 28-35.

WolfL.L. (1969). Female territoriality in a tropical hummingbird. — Auk 86: 490-504.

WolfL.L. (1975). Female territoriality in the Purple-throated Carib. — Auk 92: 511-522.

WolfL.L. & StilesF.G. (1970). Evolution of pair cooperation in a tropical hummingbird. — Evolution 24: 759-773.

ColwellR.K. (2000). Rensch’s rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. — Am. Nat. 156: 495-510.

DaleJ.DunnP.O.FiguerolaJ.LislevandT.SzékelyT. & WhittinghamL.A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 2971-2979.

PayneR.B. (1984). Sexual selection, lek and arena behaviour, and sexual size dimorphism in birds. — Ornithol. Monogr. 33: 1-52.

Figures

  • View in gallery

    Distribution of sexual size dimorphism in hummingbirds. Positive SSD values denote species in which males are larger than females, whereas negative SSD values indicate species in which females are the larger sex. The dashed line denotes the division between female-biased and male-biased SSD.

  • View in gallery

    Rensch’s rule in hummingbirds. The continuous line indicates the reference isometric relationship (β=1) and the dashed line represents the fitted relationship between male body size and female body size by major axis regression for phylogenetically independent contrasts (β=1.104, 1.037–1.177, P=0.001, N=199 phylogenetically independent contrasts).

  • View in gallery

    Relationships between body mass SSD (dependent variable) and proxies of male competition and agility using Phylogenetic Generalised Least Squares (PGLS) in hummingbirds. λ is the weighting parameter in PGLS (see Freckleton et al., 2002).

  • View in gallery

    Relationship between SSD and male agility. Wing disc loading (WDL) is used as a proxy of male agility (see Methods). Territorial hummingbird species are denoted by closed circles and a continuous line, whilst non-territorial species are denoted by open circles and a dashed line. High WDL values indicate high agility, whereas lower WDL values indicate low agility. The figure is provided for guidance only, given that the data shown are species level, non-phylogenetically corrected values.

  • View in gallery

    Relationships between SSD (dependent variable), proxies of male competition, and male size using using PGLS in hummingbirds. λ is the weighting parameter in PGLS (see Freckleton et al., 2002).

  • View in gallery

    (Continued.)

  • View in gallery

    Data used in the study and sources.

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    Reduced PGLS model of SSD in wing length (dependent variable) as a function of estimates of male competition.

  • View in gallery

    Reduced PGLS model of SSD in wing length (dependent variable) as a function of estimates of male competition and male wing length.

  • View in gallery

    Reduced PGLS model of sexual size dimorphism in body mass (dependent variable) as a function of estimates of male competition. The dataset excluded 29 taxa that were N=1.

  • View in gallery

    Reduced model of sexual size dimorphism in body mass (dependent variable) as a function of estimates of male competition. The dataset excluded 29 taxa represented by the largest sample sizes.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 17
Full Text Views 5 5 5
PDF Downloads 2 2 2
EPUB Downloads 0 0 0