Behavioural consistency and group conformity in humbug damselfish

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Humbug damselfish, Dascyllus aruanus, are a common coral reef fish that form stable social groups with size-based social hierarchies. Here we caught whole wild groups of damselfish and tested whether social groups tended to be comprised of animals that are more similar to one another in terms of their behavioural type, than expected by chance. First we found that individuals were repeatable in their level of activity and exploration, and that this was independent of both absolute size and within-group dominance rank, indicating that animals were behaviourally consistent. Secondly, despite the fact that individuals were tested independently, the behaviour of members of the same groups was significantly more similar than expected under a null model, suggesting that individual behaviour develops and is shaped by conformity to the behaviour of other group members. This is one of the first studies to demonstrate this group-level behavioural conformity in wild-caught groups.



Asoh, K. (2003). Gonadal development and infrequent sex change in a population of the humbug damselfish, Dascyllus aruanus, in continuous coral-cover habitat. — Mar. Biol. 142: 1207-1218.

Beaugrand, J.P. & Cotnoir, P.A. (1996). The role of individual differences in the formation of triadic dominance orders of male green swordtail fish (Xiphophorus helleri). — Behav. Proc. 38: 287-296.

Bell, A.M. & Sih, A. (2007). Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). — Ecol. Lett. 10: 828-834. DOI:10.1111/j.1461-0248.2007.01081.x.

Biro, P.A., Beckmann, C. & Stamps, J.A. (2010). Small within-day increases in temperature affects boldness and alters personality in coral reef fish. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 71-77. DOI:10.1098/rspb.2009.1346.

Branson, K., Robie, A.A., Bender, J., Perona, P. & Dickinson, M.H. (2009). High-throughput ethomics in large groups of Drosophila. — Nature Methods 6: 451-457.

Buston, P.M. & Cant, M.A. (2006). A new perspective on size hierarchies in nature: patterns, causes, and consequences. — Oecologia 149: 362-372.

Cailliet, G., Love, M. & Ebeling, A. (1986). Fishes: a field and laboratory manual on their structure. Identification, and natural history. — Wadsworth, Belmont, CA.

Chivers, D.P., McCormick, M.I., Allan, B.J.M., Mitchell, M.D., Goncalves, E.J., Bryshun, R. & Ferrari, M.C.O. (2016). At odds with the group: changes in lateralization and escape performance reveal conformity and conflict in fish schools. — Proc. Roy. Soc. Lond. B: Biol. Sci. 283: 20161127. DOI:10.1098/rspb.2016.1127.

Coates, D. (1980). Prey-size intake in humbug damselfish, Dascyllus aruanus (Pisces, Pomacentridae) living within social groups. — J. Anim. Ecol. 49: 335-340.

Coker, D.J., Walker, S.P., Munday, P.L. & Pratchett, M.S. (2013). Social group entry rules may limit population resilience to patchy habitat disturbance. — Mar. Ecol. Prog. Ser. 493: 237-242.

Cole, K.S. (2002). Gonad morphology, sexual development, and colony composition in the obligate coral-dwelling damselfish Dascyllus aruanus. — Mar. Biol. 140: 151-163. DOI:10.1007/s002270100681.

Conradt, L. & Roper, T.J. (2009). Conflicts of interest and the evolution of decision sharing. — Phil. Trans. Roy. Soc. B: Biol. Sci. 364: 807-819. DOI:10.1098/rstb.2008.0257.

Ferrari, M.C.O., McCormick, M.I., Allan, B.J., Choi, R., Ramasamy, R.A., Johansen, J.L., Mitchell, M.D. & Chivers, D.P. (2015). Living in a risky world: the onset and ontogeny of an integrated antipredator phenotype in a coral reef fish. — Sci. Rep. 5: 15537. DOI:10.1038/srep15537.

Forrester, G.E. (1991). Social rank, individual size and group composition as determinants of food consumption by humbug damselfish, Dascyllus aruanus. — Anim. Behav. 42: 701-711.

Fricke, H.W. & Holzberg, S. (1974). Social units and hermaphroditism in a pomacentrid fish. — Naturwissenschaften 61: 367-368.

Gibson, R. (1992). Tidally-synchronised behavior in marine fishes — NATO ASI Series (Series A: Life Sciences) 236: 63-81.

Hansen, M.J., Schaerf, T.M. & Ward, A.J.W. (2015). The effect of hunger on the exploratory behaviour of shoals of mosquitofish Gambusia holbrooki. — Behaviour 152: 1659-1677.

Hansen, M.J., Schaerf, T.M., Krause, J. & Ward, A.J.W. (2016a). Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. — PLoS One 11: e0148334.

Hansen, M.J., Schaerf, T.M., Simpson, S.J. & Ward, A.J.W. (2016b). Group foraging decisions in nutritionally differentiated environments. — Funct. Ecol. 30: 1638-1647.

Helfman, G.S. (1989). Threat-sensitive predator avoidance in damselfish–trumpetfish interactions. — Behav. Ecol. Sociobiol. 24: 47-58.

Herbert-Read, J.E., Krause, S., Morrell, L.J., Schaerf, T.M., Krause, J. & Ward, A.J.W. (2013). The role of individuality in collective group movement. — Proc. Roy. Soc. Lond. B: Biol. Sci. 280: 20122564. DOI:10.1098/rspb.2012.2564.

Hopper, L.M., Schapiro, S.J., Lambeth, S.P. & Brosnan, S.F. (2011). Chimpanzees’ socially maintained food preferences indicate both conservatism and conformity. — Anim. Behav. 81: 1195-1202. DOI:10.1016/j.anbehav.2011.03.002.

Jackson, D.A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. — Ecology 74: 2204-2214.

Jolles, J.W., Taylor, B.A. & Manica, A. (2016). Recent social conditions affect boldness repeatability in individual sticklebacks. — Anim. Behav. 112: 139-145.

Jolles, J.W., Boogert, N.J., Sridhar, V.H., Couzin, I.D. & Manica, A. (2017). Consistent individual differences drive collective behaviour and group functioning of schooling fish. — Curr. Biol. 27: 2862-2868.

Jordan, L.A., Avolio, C., Herbert-Read, J.E., Krause, J., Rubenstein, D.I. & Ward, A.J.W. (2010). Group structure in a restricted entry system is mediated by both resident and joiner preferences. — Behav. Ecol. Sociobiol. 64: 1099-1106. DOI:10.1007/s00265-010-0924-1.

King, A.J. & Cowlishaw, G. (2009). All together now: behavioral synchrony in baboons. — Anim. Behav. 78: 1381-1387. DOI:10.1016/j.anbehav.2009.09.009.

King, A.J., Johnson, D.D.P. & Van Vugt, M. (2009). The origins and evolution of leadership. — Curr. Biol. 19: R911-R916. DOI:10.1016/j.cub.2009.07.027.

King, A.J., Williams, L.J. & Mettke-Hofmann, C. (2015). The effects of social conformity on Gouldian finch personality. — Anim. Behav. 99: 25-31. DOI:10.1016/j.anbehav.2014.10.016.

Koski, S.E. & Burkart, J.M. (2015). Common marmosets show social plasticity and group-level similarity in personality. — Sci. Rep. 5: 8878. DOI:10.1038/srep08878.

Laskowski, K.L. & Pruitt, J.N. (2014). Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20133166.

Li, K.T., Wetterer, J.K. & Hairston Jr, N.G. (1985). Fish size, visual resolution, and prey selectivity. — Ecology 66: 1729-1735.

Lönnstedt, O.M., McCormick, M.I., Meekan, M.G., Ferrari, M.C.O. & Chivers, D.P. (2012). Learn and live: predator experience and feeding history determines prey behavior and survival. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 2091-2098. DOI:10.1098/rspb.2011.2516.

Mann, R.P., Herbert-Read, J.E., Ma, Q., Jordan, L.A., Sumpter, D.J.T. & Ward, A.J.W. (2014). A model comparison reveals dynamic social information drives the movements of humbug damselfish (Dascyllus aruanus). — J. Roy. Soc. Interf. 11: 20130794. DOI:10.1098/rsif.2013.0794.

Meekan, M.G., von Kuerthy, C., McCormick, M.I. & Radford, B. (2010). Behavioral mediation of the costs and benefits of fast growth in a marine fish. — Anim. Behav. 79: 803-809.

Mitchell, M.D., Chivers, D.P., McCormick, M.I. & Ferrari, M.C.O. (2015). Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation. — Sci. Rep. 5: 13918.

Northcott, S., Gibson, R. & Morgan, E. (1990). The persistence and modulation of endogenous circatidal rhythmicity in Lipophrys pholis (Teleostei). — J. Mar. Biol. Ass. UK 70: 815-827.

Nowicki, J.P., Miller, G.M. & Munday, P.L. (2012). Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. — J. Exp. Mar. Biol. Ecol. 412: 46-51.

Pike, T.W. & Laland, K.N. (2010). Conformist learning in nine-spined sticklebacks’ foraging decisions. — Biol. Lett. 6: 466-468. DOI:10.1098/rsbl.2009.1014.

Pruitt, J.N., Grinsted, L. & Settepani, V. (2013). Linking levels of personality: personalities of the ‘average’ and ‘most extreme’ group members predict colony-level personality. — Anim. Behav. 86: 391-399.

Simpson, S.D., Meekan, M.G., Larsen, N.J., McCauley, R.D. & Jeffs, A. (2010). Behavioral plasticity in larval reef fish: orientation is influenced by recent acoustic experiences. — Behav. Ecol. 21: 1098-1105.

Sweatman, H.P.A. (1983). Influence of conspecifics on choice of settlement sites by larvae of 2 pomacentrid fishes (Dascyllus aruanus and Dascyllus reticulatus) on coral reefs. — Mar. Biol. 75: 225-229.

Van Damme, R. & Van Dooren, T.J.M. (1999). Absolute versus per unit body length speed of prey as an estimator of vulnerability to predation. — Anim. Behav. 57: 347-352.

Ward, A.J., Herbert-Read, J.E., Jordan, L.A., James, R., Krause, J., Ma, Q., Rubenstein, D.I., Sumpter, D.J. & Morrell, L.J. (2013). Initiators, leaders, and recruitment mechanisms in the collective movements of damselfish. — Am. Nat. 181: 748-760.

Ward, A.J.W., Herbert-Read, J.E., Sumpter, D.J.T. & Krause, J. (2011). Fast and accurate decisions through collective vigilance in fish shoals. — Proc. Natl. Acad. Sci. USA 108: 2312-2315. DOI:10.1073/pnas.1007102108.

Ward, A.J.W., Sumpter, D.J.T., Couzin, L.D., Hart, P.J.B. & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. — Proc. Natl. Acad. Sci. USA 105: 6948-6953.

Ward, A.J.W. & Webster, M.M. (2016). Sociality: the behavior of group-living animals. — Springer, Heidelberg.

Webster, M.M. & Hart, P.J.B. (2006). Subhabitat selection by foraging threespine stickleback (Gasterosteus aculeatus): previous experience and social conformity. — Behav. Ecol. Sociobiol. 60: 77-86. DOI:10.1007/s00265-005-0143-3.

Webster, M.M. & Laland, K.N. (2012). Social information, conformity and the opportunity costs paid by foraging fish. — Behav. Ecol. Sociobiol. 66: 797-809. DOI:10.1007/s00265-012-1328-1.

Webster, M.M. & Ward, A.J.W. (2011). Personality and social context. — Biol. Rev. 86: 759-773. DOI:10.1111/j.1469-185X.2010.00169.x.

White, J.R., Meekan, M.G. & McCormick, M.I. (2015). Individual consistency in the behaviors of newly-settled reef fish. — PeerJ 3: e961.

Wilson, A.D.M., Krause, J., Herbert-Read, J.E. & Ward, A.J.W. (2014). The personality behind cheating: behavioral types and the feeding ecology of cleaner fish. — Ethology 120: 904-912. DOI:10.1111/eth.12262.

Wong, M.Y., Medina, A., Uppaluri, C., Arnold, S., Seymour, J. & Buston, P. (2013). Consistent behavioral traits and behavioral syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. — J. Fish Biol. 83: 207-213.

Wong, M.Y., Buston, P.M., Munday, P.L. & Jones, G.P. (2007). The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 1093-1099.


  • Spearman’s rank correlation showing repeatability of traits between trials 1 and 2.

    View in gallery
  • Clustering of PC1 (activity variables) and PC2 (refuging variables) scores. Each circle represents a separate individual.

    View in gallery
  • Structure matrix from principal component analysis with oblique rotation.

    View in gallery
  • Individual body length had a significant negative effect on an individual’s PC2 score (F1,78=0.333, r2=0.132, p=0.003), suggesting smaller fish tend to have a higher maximum speed and maximum distance to shelter (Linear model and 95% Confidence intervals shown).

    View in gallery
  • The ranges of PC1 scores within each group (grey bars) were significantly smaller than expected under a null model (black lines) (randomisation test, p=0.005).

    View in gallery
  • Diagram of artificial Lego® coral habitat.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 30 30 30
Full Text Views 6 6 6
PDF Downloads 0 0 0
EPUB Downloads 0 0 0