Similarities in spatial cognition in sister species of the striped mouse Rhabdomys originating from different ecological contexts

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Variation in spatial cognition is correlated with differences in the environments where animals originate, such that different environments might select for different cognitive ability. We investigated whether three sister species of the striped mouse genus Rhabdomys differed in their spatial cognition. The species originated from three locations across a rainfall gradient in southern Africa, which vary in habitat complexity. We tested individuals in a modified Barnes maze and asked whether the species had different spatial memory and navigation and whether these differences were related to their geographic location. We showed that the species had similar spatial memory and cue use, differing only when external cues were initially removed and during the first probe test of spatial memory. The similarities suggest that the environment of origin is not associated with spatial cognition in Rhabdomys, and that spatial cognition is phylogenetically constrained or there might be similar selection pressures across the distribution.

Similarities in spatial cognition in sister species of the striped mouse Rhabdomys originating from different ecological contexts

in Behaviour

Sections

References

Alleaume-BenhariraM.PenI.R. & RonceO. (2006). Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. — J. Evol. Biol. 19: 203-215.

BaptistaL.F. & KingJ.R. (1980). Geographical variation in song and song dialects of montane white-crowned sparrows. — Condor 82: 267-284.

BeriS.PattonB.W. & BraithwaiteV.A. (2014). How ecology shapes prey fish cognition. — Behav. Proc. 109: 190-194.

BörgerL.DalzielB.D. & FryxellJ.M. (2008). Are there general mechanisms of animal home range behaviour? A review and prospects for future research. — Ecol. Lett. 11: 637-650.

BrodieE.D.MooreA.J. & JanzenF.J. (1995). Visualizing and quantifying natural selection. — Trends Ecol. Evol. 10: 313-318.

BrooksP.M. (1974). The ecology of the four-striped field mouse Rhabdomys pumilio (Sparrman 1784) with particular reference to a population on the Van Riebeeck Nature Reserve Pretoria. — Unpubl. doctoral dissertation University of Pretoria Pretoria.

BrownC. & BraithwaiteV.A. (2005). Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. — Behav. Ecol. 16: 482-487.

BurnsJ.G. & RoddF.H. (2008). Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task. — Anim. Behav. 76: 911-922.

CrostonR.KozlovskyD.Y.BranchC.L.ParchmanT.L.BridgeE.S. & PravosudovV.V. (2016). Individual variation in spatial memory performance in wild mountain chickadees from different elevations. — Anim. Behav. 111: 225-234.

De GraaffG. (1981). The rodents of southern Africa. — ButterworthsDurban.

du ToitL.BennettN.NicklessA. & WhitingM. (2012a). Influence of spatial environment on maze learning in an African mole-rat. — Anim. Cogn. 15: 797-806.

du ToitN.van VuurenB.J.MattheeS. & MattheeC.A. (2012b). Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. — Mol. Phylogenet. Evol. 65: 75-86.

DufourC. (2014). Écologie de la divergence et de la coexistence: Étude empirique chez deux espèces du genre Rhabdomys. — PhD thesis University of Montpellier 2 Montpellier.

DufourC.M.S.MeynardC.WatsonJ.RiouxC.BenhamouS.PerezJ.du PlessisJ.J.AvenantN.PillayN. & GanemG. (2015). Space use variation in co-occurring sister species: response to environmental variation or competition?PLoS ONE 10: e0117750.

DukasR. (2004). Evolutionary biology of animal cognition. — Annu. Rev. Ecol. Evol. Syst. 35: 347-374.

EdelaarP.SiepielskiA.M. & ClobertJ. (2008). Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. — Evolution 62: 2462-2472.

FosterS.A. (1999). The geography of behaviour: an evolutionary perspective. — Trends Ecol. Evol. 14: 190-195.

FreasC.A.LaDageL.D.Roth IIT.C. & PravosudovV.V. (2012). Elevation-related differences in memory and the hippocampus in mountain chickadees, Poecile gambeli. — Anim. Behav. 84: 121-127.

FutuymaD.J. (2009). Evolution2nd edn.Sinauer AssociatesSunderland, MA.

GanemG.MeynardC.N.PerigaultM.LancasterJ.EdwardsS.CaminadeP.WatsonJ. & PillayN. (2012). Environmental correlates and co-occurrence of three mitochondrial lineages of striped mice (Rhabdomys) in the Free State Province (South Africa). — Acta Oecol. 42: 30-40.

GaulinS.J.C. & FitzGeraldR.W. (1986). Sex differences in spatial ability: an evolutionary hypothesis and test. — Am. Nat. 127: 74-88.

HarrisA.P.D’EathR.B. & HealyS.D. (2009). Environmental enrichment enhances spatial cognition in rats by reducing thigmotaxis (wall hugging) during testing. — Anim. Behav. 77: 1459-1464.

HarrisonF.E.HosseiniA.H. & McDonaldM.P. (2009). Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. — Behav. Brain Res. 198: 247-251.

HarrisonF.E.ReisererR.S.TomarkenA.J. & McDonaldM.P. (2006). Spatial and nonspatial escape strategies in the Barnes maze. — Learn. Mem. 13: 809-819.

HealyS.D.BaconI.E.HaggisO.HarrisA.P. & KelleyL.A. (2009). Explanations for variation in cognitive ability: behavioural ecology meets comparative cognition. — Behav. Process. 80: 288-294.

HealyS.D. & JonesC.M. (2002). Animal learning and memory: an integration of cognition and ecology. — Zoology 105: 321-327.

HeyesC. (2012). Simple minds: a qualified defence of associative learning. — Phil. Trans. Royal Soc. Lond. B: Biol. Sci. 367: 2695-2703.

HillD.L.PillayN. & SchradinC. (2015). Alternative reproductive tactics in female striped mice: heavier females are more likely to breed solitarily than communally. — J. Anim. Ecol. 84: 1497-1508.

HillsT.T. (2006). Animal foraging and the evolution of goal-directed cognition. — Cogn. Sci. 30: 3-41.

HiltonS.C. & KrebsJ.K. (1990). Spatial memory of four species of parus: performance in an open-field analogue of a radial maze. — Q. J. Exp. Psychol. B. 42: 345-368.

JacobsL.F. (2003). Memory, spatial. — In: Encyclopedia of the neurological sciences (AminoffM.J. & DaroffR.B. eds). Academic PressNew York, NY.

Jahn-EimermacherA.LasarzikI. & RaberJ. (2011). Statistical analysis of latency outcomes in behavioral experiments. — Behav. Brain Res. 221: 271-275.

JankielsohnA. (2006). The effect of habitat change on the structure of dung beetle assemblages in the north-eastern Free State: a comparison of conserved and farmed land. — Unpubl. PhD thesis University of Pretoria Pretoria.

JansonC. & ByrneR. (2007). What wild primates know about resources: opening up the black box. — Anim. Cogn. 10: 357-367.

JašarevićE.WilliamsS.A.RobertsR.M.GearyD.C. & RosenfeldC.S. (2012). Spatial navigation strategies in Peromyscus: a comparative study. — Anim. Behav. 84: 1141-1149.

JonassonZ. (2005). Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. — Neurosci. Biobehav. Rev. 28: 811-825.

JonesC.M.BraithwaiteV.A. & HealyS.D. (2003). The evolution of sex differences in spatial ability. — Behav. Neurosci. 117: 403-411.

KelleyJ.L. & BrownC. (2011). Predation risk and decision-making in poeciliid prey. — In: Ecology and evolution of poeciliid fishes (EvansJ.P.PilastroA. & SchluppI. eds). University of Chicago PressChicago, IL.

KimJ.J. & HallerJ. (2007). Glucocorticoid hyper- and hypofunction: stress effects on cognition and aggression. — Ann. NY Acad. Sci. 1113: 291-303.

KleenJ.K.SitomerM.T.KilleenP.R. & ConradC.D. (2006). Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore. — Behav. Neurosci. 120: 842-851.

LahtiD.C.JohnsonN.A.AjieB.C.OttoS.P.HendryA.P.BlumsteinD.T.CossR.G.DonohueK. & FosterS.A. (2009). Relaxed selection in the wild. — Trends Ecol. Evol. 24: 487-496.

LandeR. (1976). Natural selection and random genetic drift in phenotypic evolution. — Evolution 30: 314-334.

LeeS.A.VallortigaraG.RugaV. & SovranoV. (2012). Independent effects of geometry and landmark in a spontaneous reorientation task: a study of two species of fish. — Anim. Cogn. 15: 861-870.

LeggioM.G.MandolesiL.FedericoF.SpiritoF.RicciB.GelfoF. & PetrosiniL. (2005). Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. — Behav. Brain Res. 163: 78-90.

LupienS.J.MaheuF.TuM.FioccoA. & SchramekT.E. (2007). The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. — Brain Cogn. 65: 209-237.

MackayM.RymerT.L. & PillayN. (2014). Separation at weaning from the family is stressful for naturally group-living, but not solitary-living, male African striped mice Rhabdomys. — Stress 17: 266-274.

MaguireE.A.SpiersH.J.GoodC.D.HartleyT.FrackowiakR.S.J. & BurgessN. (2003). Navigation expertise and the human hippocampus: a structural brain imaging analysis. — Hippocampus 13: 250-259.

MailleA.PillayN. & SchradinC. (2015). Seasonal variation in attention and spatial performance in a wild population of the African striped mouse (Rhabdomys pumilio). — Anim. Cogn. 18: 1231-1242.

McKitrickM.C. (1993). Phylogenetic constraint in evolutionary theory: has it any explanatory power?Annu. Rev. Ecol. Syst. 24: 307-330.

McLayR.N.FreemanS.M. & ZadinaJ.E. (1998). Chronic corticosterone impairs memory performance in the Barnes maze. — Physiol. Behav. 63: 933-937.

MostertT.H.C.BredenkampG.J.KlopperH.L.VerweyC.MostertR.E. & HahnN. (2008). Major vegetation types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa. — Koedoe 50: 32-48.

Noldus (2013). Ethovision XT. — Noldus Information Technology Wageningen.

O’LearyT.P. & BrownR.E. (2012). The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. — J. Neurosci. Methods 203: 315-324.

PaulC.-M.MagdaG. & AbelS. (2009). Spatial memory: theoretical basis and comparative review on experimental methods in rodents. — Behav. Brain Res. 203: 151-164.

PomplP.N.MullanM.J.BjugstadK. & ArendashG.W. (1999). Adaptation of the circular platform spatial memory task for mice: use in detecting cognitive impairment in the APPSW transgenic mouse model for Alzheimer’s disease. — J. Neurosci. Methods. 87: 87-95.

PopovićN.MadridJ.A.RolM.Á.Caballero-BledaM. & PopovićM. (2010). Barnes maze performance of Octodon degus is gender dependent. — Behav. Brain Res. 212: 159-167.

RollU.DayanT. & Kronfeld-SchorN. (2006). On the role of phylogeny in determining activity patterns of rodents. — Evol. Ecol. 20: 479-490.

RothT.C.GallagherC.M.LaDageL.D. & PravosudovV.V. (2012a). Variation in brain regions associated with fear and learning in contrasting climates. — Brain Behav. Evol. 79: 181-190.

RothT.C.LaDageL.D.FreasC.A. & PravosudovV.V. (2012b). Variation in memory and the hippocampus across populations from different climates: a common garden approach. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 402-410.

RothT.C.LaDageL.D. & PravosudovV.V. (2010). Learning capabilities enhanced in harsh environments: a common garden approach. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 3187-3193.

RutherfordM.C.MucinaL.LötterM.C.BredenkampG.J.SmitJ.H.L.Scott-ShawC.R.HoareD.B.GoodmanP.S.BezuidenhoutH.ScottL.EllisF.PowrieL.W.SiebertF.MostertT.H.HenningB.J.VenterC.E.CampK.G.T.SiebertS.J.MatthewsW.S.BurrowsJ.E.DobsonL.van RooyenN.SchmidtE.WinterP.J.D.du PreezP.J.WardR.A.WilliamsonS. & HurterP.J.H. (2006). Savanna biome. — In: The vegetation of South Africa Lesotho and Swaziland (MucinaL. & RutherfordM.C. eds). South African National Biodiversity InstitutePretoria.

RymerT.SchradinC. & PillayN. (2008). Social transmission of information about novel food in two populations of the African striped mouse, Rhabdomys pumilio. — Anim. Behav. 76: 1297-1304.

RymerT.L. & PillayN. (2012). The development of exploratory behaviour in the African striped mouse Rhabdomys reflects a gene × environment compromise. — Behav. Genet. 42: 845-856.

SchradinC. (2006). Whole-day follows of striped mice (Rhabdomys pumilio), a diurnal murid rodent. — J. Ethol. 24: 37-43.

SchradinC.LindholmA.K.JohannesenJ.E.S.SchoepfI.YuenC.-H.KönigB. & PillayN. (2012). Social flexibility and social evolution in mammals: a case study of the African striped mouse (Rhabdomys pumilio). — Mol. Ecol. 21: 541-553.

SchradinC. & PillayN. (2004). The striped mouse (Rhabdomys pumilio) from the Succulent Karoo, South Africa: a territorial group-living solitary forager with communal breeding and helpers at the nest. — J. Comp. Psychol. 118: 37-47.

SchradinC. & PillayN. (2005). Intraspecific variation in the spatial and social organization of the African striped mouse. — J. Mamm. 86: 99-107.

SelonenV. & HanskiI.K. (2006). Habitat exploration and use in dispersing juvenile flying squirrels. — J. Anim. Ecol. 75: 1440-1449.

SkinnerJ.D. & ChimimbaC.T. (2005). The mammals of the southern African subregion. — Cambridge University PressCape Town.

Statsoft (2006). Statistica 7.1 — data analysis software system. — StatsoftTulsa, OK.

StrandD.A.Utne-PalmA.C.JakobsenP.J.BraithwaiteV.A.JensenK.H. & SalvanesA.G.V. (2010). Enrichment promotes learning in fish. — Mar. Ecol. Prog. Ser. 412: 273-282.

TaylorE.B. (1991). A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. — Aquaculture 98: 185-207.

Vargas-LópezV.LampreaM.R. & MúneraA. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. — Behav. Process. 86: 30-38.

WhiteG.E. & BrownC. (2015). Cue choice and spatial learning ability are affected by habitat complexity in intertidal gobies. — Behav. Ecol. 26: 178-184.

YuenC.H.PillayN.HeinrichsM.SchoepfI. & SchradinC. (2015). Personality does not constrain social and behavioural flexibility in African striped mice. — Behav. Ecol. Sociobiol. 69: 1237-1249.

YuenC.H.PillayN.HeinrichsM.SchoepfI. & SchradinC. (2016). Personality traits are consistent when measured in the field and in the laboratory in African striped mice (Rhabdomys pumilio). — Behav. Ecol. Sociobiol. 70: 1235-1246.

ZieglerP.E. & WehnerR. (1997). Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis. — J. Comp. Physiol. A. 181: 13-20.

Figures

  • View in gallery

    Map of South Africa showing locations where the taxa originated. Rhabdomys pumilio originated from Goegap Nature Reserve (29°41′33″S, 18°1′41″E) in the Northern Cape Province, R. bechuanae originated from the Sandveld Nature Reserve (27°41′57″S, 25°44′13″E) in the Free State Province, and R. d. dilectus originated from the Entabeni Forest Reserve (22°58′59″S, 30°16′56″E) in the Limpopo Province.

  • View in gallery

    Mean ± SE number of errors made during Day 4 (regular training) and Day 5 (external cues removed). Species × day was a significant predictor of errors made. R. bechuanae (RB) made more errors on Day 4 than R. d. dilectus (RDD) on Day 4. On Day 4, R. d. dilectus made fewer errors compared R. pumilio (RP) on Day 5. Different letters indicate significant differences (Fisher LSD post hoc tests).

  • View in gallery

    Mean ± SE distance travelled by males and females on both Day 4 (external cues present) and Day 5 (external cues absent). Different letters indicate significant differences (Fisher LSD post hoc tests).

  • View in gallery

    Mean ± SE distance travelled by all individuals on Day 4 (external cues present) and Day 5 (external cues absent). Different letters indicate significant differences (Fisher LSD post hoc tests).

  • View in gallery

    Mean ± SE number of errors made by each population during the first and second probe tests. Individuals made fewer errors during the second probe trial than the first. R. d. dilectus (RDD) made more errors during the first probe test than R. pumilio (RP) and R. bechuanae (RB), but similar number of errors to both R. pumilio and R. bechuanae during the second test. Different letters indicate significant differences (Fisher LSD post hoc tests).

  • View in gallery

    Mean ± SE distance travelled by individuals during probe test 1 and probe test 2. Different letters indicate significant differences (Fisher LSD post hoc tests).

  • View in gallery

    Factors influencing the variables on Days 4 and 5 of training.

  • View in gallery

    Levels influencing the variables on Days 4 and 5 of training.

  • View in gallery

    Factors influencing the variables during probe tests 1 and 3.

  • View in gallery

    Levels influencing the variables on Days 1 and 2 of training.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 10
Full Text Views 7 7 5
PDF Downloads 2 2 2
EPUB Downloads 0 0 0