Determinants of leadership in groups of female mallards

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


When moving in groups, social animals tend to follow a leader which successfully attracted them. Many variables are known to affect an individual’s propensity to act as a leader. Depending on their nature, these variables underlie two theoretical paradigms (i) ‘leadership according to social indifference’, characterised by differences in personality or sociability, or (ii) ‘leadership according to need’, characterised by differences in energetic requirements or information content. Currently, it is not clear under which circumstances each of the two paradigms plays a larger role. Here, we tried to understand these paradigms by observing collective movements in female mallards. Each of these mallards previously learned individually to associate one of four locations in a maze with food rewards. We then formed groups of various compositions (group size range: 2–5 individuals) with respect to personality, sociability, energetic requirements, motivation and information content. We found that groups remained cohesive, and that certain individuals were consistent leaders within and between trials. The order of entering the maze was mainly determined by energetic requirements. However, soon after entering the maze, the progression order changed. Then, more socially indifferent individuals took the lead and this new order remained constant until all individuals reached the final location, which was usually the one the leader had learned. In addition, we investigated the role of naïve individuals in group decision-making. In our setup, adding naïve individuals broke the leadership consistency between trials and increased fission events. Overall, our results show that the onset of collective movements may be driven by different mechanisms compared to the movement progression itself.

Determinants of leadership in groups of female mallards

in Behaviour



AgrestiA. (2002). Categorical data analysis2nd edn. — WileyHoboken, NJ.

ÁkosZ.BeckR.NagyM.VicsekT.KubinyiE. (2014). Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs. — PLoS Comput. Biol. 10: e1003446. DOI:10.1371/journal.pcbi.1003446.

AltmannJ. (1974). Observational study of behavior: sampling methods. — Behaviour 49: 227-267.

AndrieuJ.HenryS.HausbergerM.ThierryB. (2016). Informed horses are influential in group movements, but they may avoid leading. — Anim. Cogn. 19: 451-458. DOI:10.1007/s10071-015-0945-2.

AplinL.M.FarineD.R.MannR.P.SheldonB.C. (2014). Individual-level personality influences social foraging and collective behaviour in wild birds. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20141016. DOI:10.1098/rspb.2014.1016.

BarelliC.BoeschC.HeistermannM.ReichardU.H. (2008). Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. — Behaviour 145: 965-981. DOI:10.1163/156853908784089243.

BattestiM.PasquarettaC.MorenoC.JolyD.KlenschE.PetitO.SueurC.MeryF. (2015). Ecology of information: social transmission dynamics within groups of non-social insects. — Proc. R. Soc. Lond. B Biol. 282: 20142480. DOI:10.1098/rspb.2014.2480.

BeauchampG. (2000). Individual differences in activity and exploration influence leadership in pairs of foraging zebra finches. — Behaviour 137: 301-314. DOI:10.1163/156853900502097.

BirdLife International (2012). Anas platyrhynchos. In: The IUCN red list of threatened species — Version 2015.4. — Available online at

BiroD.SumpterD.J.T.MeadeJ.GuilfordT. (2006). From compromise to leadership in pigeon homing. — Curr. Biol. 16: 2123-2128. DOI:10.1016/j.cub.2006.08.087.

BiroP.A.StampsJ.A. (2015). Using repeatability to study physiological and behavioural traits: ignore time-related change at your peril. — Anim. Behav. 105: 223-230. DOI:10.1016/j.anbehav.2015.04.008.

BourjadeM.SueurC. (2010). Shared or unshared consensus for collective movement? Towards methodological concerns. — Behav. Proc. 84: 648-652. DOI:10.1016/j.beproc.2010.02.027.

BourjadeM.ThierryB.HausbergerM.PetitO. (2015). Is leadership a reliable concept in animals? An empirical study in the horse. — PLoS ONE 10: e0126344. DOI:10.1371/journal.pone.0126344.

BousquetC.A.H.ManserM.B. (2011). Resolution of experimentally induced symmetrical conflicts of interest in meerkats. — Anim. Behav. 81: 1101-1107. DOI:10.1016/j.anbehav.2011.02.030.

BousquetC.A.H.SumpterD.J.T.ManserM.B. (2011). Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 1482-1488. DOI:10.1098/rspb.2010.1739.

BousquetC.A.H.PetitO.ArrivéM.RobinJ.P.SueurC. (2015). Personality tests predict responses to a spatial learning task in mallards (Anas platyrhynchos). — Anim. Behav. 110: 145-154. DOI:10.1016/j.anbehav.2015.09.024.

BriardL.DornC.PetitO. (2015). Personality and affinities play a key role in the organisation of collective movements in a group of domestic horses. — Ethology 121: 888-902. DOI:10.1111/eth.12402.

ChaseI.D.ToveyC.Spangler-MartinD.ManfredoniaM. (2002). Individual differences versus social dynamics in the formation of animal dominance hierarchies. — Proc. Natl. Acad. Sci. USA 99: 5744-5749. DOI:10.1073/pnas.082104199.

ChristensenR.H.B. (2015). ordinal — Regression models for ordinal data. — R package version 2015.1-21:

ConradtL. (2012). Models in animal collective decision-making: information uncertainty and conflicting preferences. — Interface Focus. DOI:10.1098/rsfs.2011.0090.

ConradtL.KrauseJ.CouzinI.D.RoperT.J. (2009). “Leading according to need” in self-organizing groups. — Am. Nat. 173: 304-312. DOI:10.1086/596532.

CouzinI.D.IoannouC.C.DemirelG.GrossT.TorneyC.J.HartnettA.ConradtL.LevinS.A.LeonardN.E. (2011). Uninformed individuals promote democratic consensus in animal groups. — Science 334: 1578-1580. DOI:10.1126/science.1210280.

DesforgesM.F.Wood-GushD.G.M. (1975). A behavioural comparison of domestic and mallard ducks. Spatial relationships in small flocks. — Anim. Behav. 23: 698-705. DOI:10.1016/0003-3472(75)90146-3.

FarineD.R.MontiglioP.O.SpiegelO. (2015). From individuals to groups and back: the evolutionary implications of group phenotypic composition. — Trends. Ecol. Evol. 30: 609-621. DOI:10.1016/j.tree.2015.07.005.

FischhoffI.R.SundaresanS.R.CordingleyJ.E.RubensteinD.I. (2007). Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. — Anim. Behav. 73: 825-831. DOI:10.1016/j.anbehav.2006.10.012.

FlackA.PettitB.FreemanR.GuilfordT.BiroD. (2012). What are leaders made of? The role of individual experience in determining leader–follower relations in homing pigeons. — Anim. Behav. 83: 703-709. DOI:10.1016/j.anbehav.2011.12.018.

FurrerR.D.KuncH.P.ManserM.B. (2012). Variable initiators of group departure in a cooperative breeder: the influence of sex, age, state and foraging success. — Anim. Behav. 84: 205-212. DOI:10.1016/j.anbehav.2012.04.034.

GautraisJ. (2010). The hidden variables of leadership. — Behav. Proc. 84: 664-667. DOI:10.1016/j.beproc.2010.03.002.

GibbonsJ.M.LawrenceA.B.HaskellM.J. (2010). Measuring sociability in dairy cows. — Appl. Anim. Behav. Sci. 122: 84-91. DOI:10.1016/j.applanim.2009.11.011.

HarcourtJ.L.SweetmanG.ManicaA.JohnstoneR.A. (2010). Pairs of fish resolve conflicts over coordinated movement by taking turns. — Curr. Biol. 20: 156-160. DOI:10.1016/j.cub.2009.11.045.

HeppG.R. (1989). Benefits, costs, and determinants of dominance in American black ducks. — Behaviour 109: 222-234. DOI:10.1163/156853989X00240.

IoannouC.C.SinghM.CouzinI.D. (2015). Potential leaders trade off goal-oriented and socially oriented behavior in mobile animal groups. — Am. Nat. 2: 284-293. DOI:10.1086/681988.

JohnstoneR.A.ManicaA. (2011). Evolution of personality differences in leadership. — Proc. Natl. Acad. Sci. USA 108: 8373-8378. DOI:10.1073/pnas.1102191108.

KerthG. (2010). Group decision-making in fission-fusion societies. — Behav. Proc. 84: 662-663. DOI:10.1016/j.beproc.2010.02.023.

KingA.J. (2010). Follow me! I’m a leader if you do; I’m a failed initiator if you don’t? — Behav. Proc. 84: 671-674. DOI:10.1016/j.beproc.2010.03.006.

KrauseJ.BumannD.TodtD. (1992). Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). — Behav. Ecol. Sociobiol. 30: 177-180. DOI:10.1007/BF00166700.

KurversR.H.J.M.AdamczykV.M.A.P.van WierenS.E.PrinsH.H.T. (2011). The effect of boldness on decision-making in barnacle geese is group-size-dependent. — Proc. R. Soc. Lond. B Biol. 278: 2018-2024. DOI:10.1098/rspb.2010.2266.

LamprechtJ. (1996). What makes an individual the leader of its group? An evolutionary concept of distance regulation and leadership. — Soc. Sci. Inf. 35: 595-617. DOI:10.1177/053901896035004001.

LeonardN.E.ShenT.NabetB.ScardoviL.CouzinI.D.LevinS.A. (2012). Decision versus compromise for animal groups in motion. — Proc. Natl. Acad. Sci. USA 109: 227-232. DOI:10.1073/pnas.1118318108.

LigonR.A.ButlerM.W. (2016). Body mass and immune function, but not bill coloration, predict dominance in female mallards. — Behav. Proc. 131: 59-67. DOI:10.1016/j.beproc.2016.08.010.

ListeG.AsherL.BroomD.M. (2014). When a duck initiates movement, do others follow? Testing preference in groups. — Ethology 120: 1199-1206. DOI:10.1111/eth.12294.

McClureM.RalphM.DesplandE. (2011). Group leadership depends on energetic state in a nomadic collective foraging caterpillar. — Behav. Ecol. Sociobiol. 65: 1573-1579. DOI:10.1007/s00265-011-1167-5.

McCombK.ShannonG.DurantS.M.SayialelK.SlotowR.PooleJ.MossC. (2011). Leadership in elephants: the adaptive value of age. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 3270-3276. DOI:10.1098/rspb.2011.0168.

McDonaldN.D.RandsS.A.HillF.ElderC.IoannouC.C. (2016). Consensus and experience trump leadership, suppressing individual personality during social foraging. — Sci. Adv. 2: e1600892. DOI:10.1126/sciadv.1600892.

MillerN.GarnierS.HartnettA.T.CouzinI.D. (2013). Both information and social cohesion determine collective decisions in animal groups. — Proc. Natl. Acad. Sci. USA 110: 5263-5268. DOI:10.1073/pnas.1217513110.

NakagawaS.SchielzethH. (2010). Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. — Biol. Rev. 85: 935-956. DOI:10.1111/j.1469-185X.2010.00141.x.

NakagawaS.SchielzethH. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. — Methods Ecol. Evol. 4: 133-142. DOI:10.1111/j.2041-210x.2012.00261.x.

NesterovaA.P.FlackA.van LoonE.E.BonadonnaF.BiroD. (2015). The effect of experienced individuals on navigation by king penguin chick pairs. — Anim. Behav. 104: 69-78. DOI:10.1016/j.anbehav.2015.03.008.

O’BrienR.M. (2007). A caution regarding rules of thumb for variance inflation factors. — Qual. Quant. 41: 673-690. DOI:10.1007/s11135-006-9018-6.

PeigJ.GreenA.J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. — Oikos 118: 1883-1891. DOI:10.1111/j.1600-0706.2009.17643.x.

PetitO.BonR. (2010). Decision-making processes: the case of collective movements. — Behav. Proc. 84: 635-647. DOI:10.1016/j.beproc.2010.04.009.

PillotM.H.GautraisJ.GouelloJ.MichelenaP.SibbaldA.BonR. (2010). Moving together: incidental leaders and naïve followers. — Behav. Proc. 83: 235-241. DOI:10.1016/j.beproc.2009.11.006.

PoisbleauM.FritzH.GuillemainM.LacroixA. (2005). Testosterone and linear social dominance status in captive male dabbling ducks in winter. — Ethology 111: 493-509. DOI:10.1111/j.1439-0310.2005.01092.x.

PoisbleauM.GuillemainM.DemonginL.CarslakeD.DavidJ. (2009). Within-brood social status and consequences for winter hierarchies amongst Mallard Anas platyrhynchos ducklings. — J. Ornithol. 150: 195-204. DOI:10.1007/s10336-008-0334-6.

PyritzL.W.KingA.J.SueurC.FichtelC. (2011). Reaching a consensus: terminology and concepts used in coordination and decision-making research. — Int. J. Primatol. 32: 1268-1278. DOI:10.1007/s10764-011-9524-9.

R core team (2015). R: a language and environment for statistical computing. — R Foundation for Statistical Computing available online at

RamseyerA.PetitO.ThierryB. (2009). Decision-making in group departures of female domestic geese. — Behaviour 146: 351-371. DOI:10.1163/156853909X410955.

RasaO.A.E. (1987). The dwarf mongoose: a study of behavior and social structure in relation to ecology in a small, social carnivore. — Adv. Stud. Behav. 17: 121-163.

RiceW.R. (1989). Analyzing tables of statistical tests. — Evolution 43: 223-225. DOI:10.2307/2409177.

RosenthalS.B.TwomeyC.R.HartnettA.T.WuH.S.CouzinI.D. (2015). Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. — Proc. Natl. Acad. Sci. USA 112: 4690-4695. DOI:10.1079/pnas.1420068112.

ŠárováR.ŠpinkaM.PanamáJ.L.A.ŠimečekP. (2010). Graded leadership by dominant animals in a herd of female beef cattle on pasture. — Anim. Behav. 79: 1037-1045. DOI:10.1016/j.anbehav.2010.01.019.

SibbaldA.M.ErhardH.W.McLeodJ.E.HooperR.J. (2009). Individual personality and the spatial distribution of groups of grazing animals: an example with sheep. — Behav. Proc. 82: 319-326. DOI:10.1016/j.beproc.2009.07.011.

SilkM.J.CroftD.P.TregenzaT.BearhopS. (2014). The importance of fission-fusion social group dynamics in birds. — Ibis 156: 701-715. DOI:10.1111/ibi.12191.

SmithJ.E.KolowskiJ.M.GrahamK.E.DawesS.E.HolekampK.E. (2008). Social and ecological determinants of fission-fusion dynamics in the spotted hyaena. — Anim. Behav. 76: 619-636. DOI:10.1016/j.anbehav.2008.05.001.

SmithJ.E.GavriletsS.Borgerhoff MulderM.HooperP.L.El MoudenC.NettleD.HauertC.HillK.PerryS.PuseyA.E.van VugtM.Alden SmithE. (2016). Leadership in mammalian societies: emergence, distribution, power, and payoff. — Trends Ecol. Evol. 31: 54-66. DOI:10.1016/j.tree.2015.09.013.

Strandburg-PeshkinA.FarineD.R.CouzinI.D.CrofootM.C. (2015). Shared decision-making drives collective movement in wild baboons. — Science 348: 1358-1361. DOI:10.1126/science.aaa5099.

SueurC. (2012). Viability of decision-making systems in human and animal groups. — J. Theor. Biol. 306: 93-103. DOI:10.1016/j.jtbi.2012.04.020.

SueurC.DeneubourgJ.L.PetitO.CouzinI.D. (2010). Differences in nutrient requirements imply a non-linear emergence of leaders in animal groups. — PLoS Comput. Biol. 6: e1000917. DOI:10.1371/journal.pcbi.1000917.

SueurC.DeneubourgJ.L.PetitO. (2011). From the first intention movement to the last joiner: macaques combine mimetic rules to optimize their collective decisions. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 1697-1704.

SueurC.KingA.J.PeléM.PetitO. (2013a). Fast and accurate decisions as a result of scale-free network properties in two primate species. — In: Proceedings of the European conference on complex systems (Gilbert T. Kirkilionis M. & Nicolis G. eds) p. 579-584.

SueurC.MacIntoshA.J.J.JacobsA.T.PetitO. (2013b). Predicting leadership using nutrient requirements and dominance rank of group members. — Behav. Ecol. Sociobiol. 67: 457-470. DOI:10.1007/s00265-012-1466-5.

TrillmichJ.FichtelC.KappelerP.M. (2004). Coordination of group movements in wild Verreaux’s sifakas (Propithecus verreauxi). — Behaviour 141: 1103-1120. DOI:10.1163/1568539042664579.

van SchaikC.P. (1999). The socioecology of fission-fusion sociality in Orangutans. — Primates 40: 69-86. DOI:10.1007/BF02557703.

ZuurA.F.IenoE.N.ElphickC.S. (2010). A protocol for data exploration to avoid common statistical problems. — Methods Ecol. Evol. 1: 3-14. DOI:10.1111/j.2041-210X.2009.00001.x.


  • View in gallery

    Distribution of the pre-departure behaviours (5 leftmost variables) and of the individual characteristics (5 rightmost variables), cut by the position in the Start Order. Asterisks represent the statistical significance of the associated CLMM: p<0.01, ∗∗ p<0.001.

  • View in gallery

    Distribution of the pre-departure behaviours (5 leftmost variables) and of the individual characteristics (5 rightmost variables), cut by the position in the End Order. Asterisks represent the statistical significance of the associated CLMM: p<0.01, ∗∗ p<0.001.

  • View in gallery

    Schematic representation of the consistency of positions during group movements. For each set, the thin black line represents the number of group movements without group fission; the thick blue line represents the 95% confidence interval corresponding to how often individuals in a group are expected to change positions according to random shuffling of first individuals’ identities between the End Order and the Start Order or the First Choice Order (10 000 permutations for each set); the red vertical line represents how many times positions were the same between the Start Order and the End Order; and the green vertical line with diamonds represents how many times positions were identical between the First Choice Order and the End Order.

  • View in gallery

    Sketch of the setup used in the Collective decision experiments. In a first step of the overall protocol, mallards learnt individually to associate an end compartment with the presence of a certain amount of appetent food (+) or with the double amount (++). In the second step of the protocol, various groups were formed and the overall group trajectories as well as the identities of leaders and followers were recorded. Here, the group consists of two individuals (blue) trained to go to a relatively low food reward (blue) and of one individual (pink) trained to go to a more rewarding location (pink). Thin dashed line: putative trajectory of the group represented in the pre-start compartment; Thick dashed lines, trap doors; ellipses, positions retained to analyse order in the group movement.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 17
Full Text Views 15 15 14
PDF Downloads 3 3 3
EPUB Downloads 0 0 0